THE NEAR-INFRARED SPECTRUM OF CH$_2^+$

CHRISTOPHER F. NEESE, JENNIFER L. GOTTFRIED, and Takeshi Oka, Department of Chemistry, Department of Astronomy & Astrophysics, and the Enrico Fermi Institute, The University of Chicago, Chicago IL, 60637, USA.

The molecular ion CH$_2^+$ is of special theoretical interest because it is both quasi-linear and exhibits a strong Renner-Teller interaction between its ground and first-excited electronic states. At linearity, the ground state is a $^2\Pi_u$ state that splits into $\tilde{X}^2\Pi_A$ and $\tilde{A}^2\Pi_B$ states as the molecule bends. The \tilde{A} state is linear, while the \tilde{X} is quasi-linear with a barrier to linearity of only 1089 cm$^{-1}$. Thus, only the ground vibrational state is bound by the barrier to linearity.

The spectrum of CH$_2^+$ in the region 11,000–13,000 cm$^{-1}$ has been recorded with our Ti:sapphire laser spectrometer. This spectrometer couples velocity modulation with heterodyne detection for near shot-noise-limited sensitivity. Since our initial letter on this spectrum, we have selectively rescanned portions of this spectrum with improved signal-to-noise. As a result, we have been able to assign the $\tilde{A}(0, 3, 0)^3 \rightarrow \tilde{X}(0, 0, 0)^2$ band and detect the $\tilde{X}(0, 9, 0)^2 \rightarrow \tilde{X}(0, 0, 0)^1$ band, whose assignment is in progress. A more detailed analysis of the entire spectrum, including spin splitting, is underway.