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Orders of Magnitude and Symmetry in Molecular
Spectroscopy
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Department of Chemistry and Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois, USA

1 INTRODUCTION

A molecule is an aggregate of electrons and nuclei each
with a mass, an electric charge, a magnetic dipole moment
for the former, and often electric and magnetic multipole
moment for the latter. The particles move in a very com-
plicated manner in the electric and magnetic fields. If the
system were governed by the law of classical mechanics,
it would be a hopeless task to quantify this complicated
system. The three-body problem under the gravitational
force alone is already a headache for astronomers. Quan-
tum mechanics makes it simpler. The quantum mechanics
of molecules is manageable for two reasons. First, because
of the principle of superposition of states, which is the sub-
ject of the first chapter of Dirac (1986) as “one of the most
fundamental and drastic departure from classical mechan-
ics”, magnetic moments of two electrons paired in a singlet
state are canceled so perfectly that we can completely for-
get about their magnetic interaction. For an ordinary stable
molecule where electrons are all paired, we need to consider
only the electric interactions of electrons. For a radical or
a molecule in a multiplet state like O2 we need to consider
only the magnetic effect of electrons in the multiplet state,
and do not need to consider their magnetic interactions with
other paired electrons. The principle of superposition of
states also reduces the classically chaotic motion to sim-
ple linear combinations of eigenfunctions and makes the
problem manageable.

Second, the two dimensionless quantities, the fine struc-
ture constant (Section 2.1), α = e2/�c ∼ 1/137, and the
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Born–Oppenheimer constant (Section 2.3), κ = (m/M)1/4

∼ 1/10, are both much smaller than 1 and we can treat
many interactions using the perturbation method as a power
series of α and κ with good convergence. Nuclear physics
and particle physics do not have this advantage since,
for the strong interaction, the corresponding dimensionless
number g2/�c is larger than 1 and the perturbation method
cannot be applied effectively. In Section 2, we enumer-
ate all possible atomic and molecular interactions, express
them in a power series of α and κ and estimate their orders
of magnitude. Although not mentioned in previous text-
books of molecular spectroscopy, it is believed that the
consideration of orders of magnitude of various interactions
is one of the foundations of molecular spectroscopy. The
author has learnt the importance of estimating the order of
magnitude both in theory and experiment as a student of
Shimoda (1960), his thesis supervisor, to whom this chapter
is dedicated.

The other foundation is molecular symmetry which
is discussed in Section 3 of this chapter. Discussions
of symmetry using group theory is useful for gaining
perspective in many fields of science, but it is particularly
rich and multifaceted in molecular spectroscopy because
it contains the rigorous symmetry for permutation of
identical nuclei. This is almost unique for free molecules.
Traditionally, molecular symmetry has been discussed on
the basis of geometrical symmetry using point groups
because the symmetry entered molecular spectroscopy
through crystallography (Section 3.2.2), but clearly the
symmetry of permutation is more rigorous and allows more
direct discussions.

While the discussion of the order of magnitude in Section
2 is quantitative but approximate, that of symmetry in
Section 3 is qualitative but rigorous. They are closely
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2 Orders of Magnitude and Symmetry in Molecular Spectroscopy

related and they together make molecular spectroscopy
transparent and tidy. Unlike the order of magnitude, the
molecular symmetry has been discussed in many textbooks
of molecular spectroscopy. Here, the discussions are limited
to the most fundamental ones. The symmetries of the
electronic and vibrational states are discussed in the classic
books by Herzberg (1989) and Wilson et al. (1980) and the
discussions are limited only to the symmetry of rotational
states that are not fully discussed in the previous textbooks.

2 ORDERS OF MAGNITUDE OF
VARIOUS INTERACTIONS

2.1 The Fine Structure Constant

In our theory of the fine structure there is a confluence of
the three main currents of modern research in theoretical
physics, namely, the theory of electrons [e], the theory of
quanta [h/2π], and the theory of relativity [c]. This is
exhibited in a particularly vivid way in the way our fine-
structure constant is built up: α = 2πe2/hc.

Sommerfeld (1919)

All molecular quantities can be described by four nat-
ural constants – the elementary electric charge e, Planck’s
constant h, the light velocity c, the mass of the electrons
m – and nuclear parameters such as their mass M , electric
charge Ze, and electric and magnetic multipole moments.
The nuclear parameters should also be reducible to a few
natural constants but this is more difficult for the reason
mentioned earlier. Here, we treat them as given constants.
As mentioned above by Sommerfeld, who introduced the
fine structure constant, each of the natural constant repre-
sents a major field of modern physics: e – electrodynamics,
h – quantum mechanics, and c – special relativity. If a for-
mula contains a natural constant, you are assured that the
field of physics represented by the constant has been used in
its derivation.a The gravitational interaction represented by
G, which plays the dominant role in astronomy, also exists
in atoms and molecules, but since GM2

p /e2 ∼ 8.1 × 10−37,
its effect is negligible compared with the electric interaction
for the currently available spectroscopic techniques.

From the three universal constants, e, h, and c, we
can form a dimensionless quantity, Sommerfeld’s fine
structure constant, central to the atomic theory and quantum
electrodynamics,

α = e2

�c
∼ 1

137.03599968
(1)

where � is Dirac’s h/2π . It is believed that someday this
value will be explained by a deep theory but for now, we
just accept it as a constant.

The meaning of the fine structure constant is seen most
directly from Bohr’s model of hydrogen atom. For the
electron at a distance r from the proton moving with a
velocity v, the balance of the electric attractive force and
the centrifugal force gives

e2

r2
= mv2

r
(2)

The 1913 statement of Bohr “[i]f we therefore assume
that the orbit of the stationary state is circular, the result of
the calculation can be expressed by the simple condition:
that the angular momentum [a]round the nucleus in a
stationary state of the system is equal to an entire multiple
of a universal value [�]” gives

rmv = n� (3)

Multiplying equations (2) and (3), we have, for n = 1,

α = e2

�c
= v

c
∼ 10−2 (4)

that is, the fine structure constant gives the order of
magnitude of the ratio of velocity of the electron to the
velocity of light for low n. The velocity of the electron
must be on the order of v ∼ αc ∼ 3000 km s−1. The energy
of the electron in a hydrogen atom is obtained as

Welec = mv2

2
− e2

r
= −mv2

2
= −me4

2�2
· 1

n2
= −Ry

n2
(5)

where n is the principle quantum number and Ry/hc =
10 9737.31568527(73) cm−1 is the Rydberg constant.
Bohr’s old quantum mechanics has been superseded by the
quantum mechanics of Heisenberg, Dirac and Schrödinger,
and equation (3) is incorrect (n is the principal quan-
tum number and not the angular momentum quantum
number), but the energy expression equation (5) and the
Bohr radius a0 = �

2/me2 = 0.5291772108 Å are identical
to those obtained by the new quantum mechanics. The sim-
plicity of Bohr’s model allows us to estimate the order
of magnitude of many interactions without losing sight in
complicated formalism.

Since all relativistic effects of electrons, that is, the mag-
netic interaction, the retardation effect, the quantum elec-
trodynamical effects etc., scale with v/c, their magnitudes
are given as a power series of α. For example, the Einstein
energy formula applied to an electron gives

W = mc2√
1 − v2/c2

= mc2
[

1 + 1

2
α2 + 3

8
α4 + · · · ·

]
(6)

The first term is the electron rest mass energy (0.5 MeV).
The second term is the kinetic energy, which is equal in
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Orders of Magnitude and Symmetry in Molecular Spectroscopy 3

magnitude to the Rydberg constant, and gives Welec when
combined with −e2/r . It is shown below that the third
term gives magnetic energy, which causes fine structure of
atomic spectra.

Finally, we note that the order of magnitude of the elec-
tronic energy Welec ∼ 10 000 cm−1, the electron velocity
v ∼ 3000 km s−1, and the radius r ∼ 0.5 Å apply also for
atoms with more than one electron and molecules. We are
interested in the general order of magnitude discussions and
do not worry about differences by a factor of several.

2.1.1 Atomic Interactions

In this section, we enumerate all interactions in atoms that
are relevant to spectroscopy and estimate their orders of
magnitude. The estimated values for atoms work also for
molecules. We are concerned only with a few electrons
in the outer shells. Electrons in the inner shells of heavy
atoms may have relativistic velocities for which v/c � α,
but their spectra appear in the X-ray region and are outside
the scope of this chapter.

2.1.2 Fine Structure

The fine structure of a spectrum is caused by magnetic
(relativistic) interactions represented by the third term of
equation (6). Again, we start from the simplest case of the
H atom for which the rigorous relativistic energy formula
is known, but first let us enumerate magnetic interactions
using Bohr’s model to have a rough picture. There is no
such thing as magnetic charge and all magnetic interactions
result from relativistic effects due to time-dependent electric
fields (the Maxwell theory of electricity and magnetism).
Since magnetic effects scale with v/c, a magnetic quantity
is α times the corresponding electric quantities. The electric
field of the proton at the position of the electron in the Bohr
model is

E = e

a0
2

= m2e5

�4
∼ 5 × 109 V cm−1 (7)

and the electron moving in this field “feels” a magnetic
field of

H = αE = m2e7

�5c
∼ 4 × 109 G (8)

The electric dipole moment of the H atom is

µe = a0e = �
2

me
= 2.543 Debye ∼ 1.3 MHz V−1 cm (9)

and the magnetic dipole moment of the orbital motion of
the electron is

µB = 1

2
αµe = e�

2mc
∼ 1.4 MHz G−1 (10)

which was named the Bohr magneton by Pauli in 1920.
The factor of 1/2 is due to the definition of the magnetic
moment. Dirac’s relativistic wave equation for the electron,
which does not contain any ad hoc magnetic parameter
but simply uses the quantized operator form of the elec-
tron energy given in equation (6), gives the spin angular
momentum s and its magnetic moment whose magnitude
is also µB. Therefore the magnetic (relativistic) energy of
the electron moving with the orbital angular momentum l
in the electric field is

Ws·l = µBH = me8

2c2�4
= α2Ry ∼ 10 cm−1 (11)

Just like the nonrelativistic energy of the electron in the H
atom is given rigorously by the Bohr formula equation (5),
the relativistic energy of the electron is given by the solution
of Dirac’s relativistic wave equation with the Coulomb
potential −e2/r . The solution is

W = mc2


1 +




α

n − (j + 1
2 ) +

√
(j + 1

2 )2 − α2




2


− 1
2

(12)

where j is the quantum number for the total angular
momentum, j = l + s. Readers are referred to Dirac (1986)
for the Dirac equation and Bethe and Salpeter (1977) for
a derivation and history of the solution (12). Expanding
equation (12), we have

W = mc2

[
1 − 1

2
α2 + 3

8
α4

{
1 − 4

3
(
j + 1

2

)
}

− · · · ·
]

(13)

which mimics equation (6) with −e2/r added because of
equation (5). The third term for an arbitrary value of n can
be rewritten as

Ws·l = α2Ry

n4

[
3

4
− n

j + 1
2

]
(14)

which is the expression given by Sommerfeld using old
quantum mechanics. Note the agreement in the order of
magnitude with equation (11). The fine structure split-
ting between the 22P3/2 and 22P1/2 levels of hydro-
gen is 0.3652 cm−1, which is about 30 times smaller
because n = 2 and from other quantum number dependen-
cies. This is special for the H atom because of an extra
degeneracy (“accidental” degeneracy, see Vol. III of Lan-
dau and Lifshitzb). For other atoms and molecules, the
spin–orbit interaction is on the order of 10 cm−1 as given
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4 Orders of Magnitude and Symmetry in Molecular Spectroscopy

in equation (11). The order of magnitude discussed in this
chapter is for the coefficient and applies to energy for low
quantum numbers.

The energy of the spin–orbit interaction Ws·l considered
above for the electron in the H atom is between the spin
angular momentum s and the orbital angular momentum
l of the same electron. For other atoms and molecules
containing more than one electron, sometimes we need to
consider magnetic interactions between different electrons.
Energies of spin-other-orbit interaction Ws·l′ and spin–spin
interaction Ws·s′ (where the prime signifies a different
electron) are both on the same order of magnitude as Ws·l ,
that is

Ws·l ∼ Ws·l′ ∼ Ws·s′ ∼ α2Ry ∼ 10 cm−1 (15)

This is most directly seen from the fact that both the
orbital angular momentum l′ and spin angular momentum
s′ of the other electron have magnetic moments on the order
of µB and the magnetic interaction with s is on the order
of the dipole–dipole interaction, µB

2/a0
3.

2.1.3 Radiative Corrections

Since the relativistic energy expression (12) depends only
on quantum numbers n and j but does not depend on
l, the 2S1/2 and 2P1/2 levels of H should be degenerate.
Early high-resolution optical spectroscopy hinted that this
was not the case and that equation (12) was not the final
word. Pasternack interpreted it as due to a shift of the 2S1/2

level and it was called the Pasternack effect. Lamb and
Retherford measured the direct radio frequency transition
between the two levels at 1057.77 MHz. This measurement
together with the discovery that the magnetic moment of
the electron is slightly higher than µB has led to the
development of quantum electrodynamics (QED). Readers
are referred to Bethe and Salpeter (1977) for the theory.
Here it suffices to mention that the Lamb shift, which
is also called a radiative correction, is on the order of
α3Ry ∼ 0.1 cm−1 and it is the only interaction in which
an odd power of α appear in the energy formula.

The radiative corrections on the order of 0.1 cm−1 applies
also to other atoms and molecules. The degeneracy of
the S and P levels, however, is unique for hydrogen
and hydrogen-like ions (“accidental” degeneracy), and the
radiative correction simply shifts nondegenerate energy
levels for other atoms and molecules. It is relevant only
when an experimental spectrum is compared with very
accurate ab initio theory.

The radiative correction to the electron spin magnetic
moment expressed as the spin g-factor is

gs = 2

(
1 + α

2π
− 2.973

α2

π2
+ · · ·

)
(16)

2.1.4 Hyperfine Structure

We now consider smaller interactions due to electric
and magnetic multipole moments of atomic nuclei. These
moments exist because nuclei are not point charges but have
size and shape. Splittings of spectra due to nuclear moments
are usually much smaller than the fine structure, hence the
name hyperfine structure. We first note that a nucleus with
the nuclear spin quantum number I has multipole moments
up to 22I -pole, and that the multipole moment is electric
if I is an integer but is magnetic if I is a half integer.
Thus, monopole 20, quadrupole 22, hexadecapole 24, etc.,
are electric, while dipole 21, octopole 23, etc., are magnetic.
Intensive searches for particles with moments violating
this rule such as magnetic monopole, electric dipole have
been conducted without success. Thus, for example, 4He,
12C, 16O, etc., with I = 0 have only the electric monopole
(charge), 1H, 3He, 13C, etc., with I = 1/2, have a charge
and a magnetic dipole, 2H, 6Li, 14N, etc., with I = 1 have a
charge, a magnetic dipole, and an electric quadrupole, and
so on.

The expression of the Bohr magneton equation (10)
shows that a magnetic moment of a particle is inversely pro-
portional to its mass. Thus, the magnetic dipole moments
of nuclei are smaller than that of an electron by m/M ∼
κ4 ∼ 10−4. It is on the order of the nuclear magneton

µN = e�

2Mpc
∼ 0.7623 kHz G−1 (17)

and the individual magnetic moment of a nucleus is
expressed by a g-factor, µm = gµN. The g-factor of a
nuclear magnetic moment cannot be expressed as neatly as
for electron for the reason mentioned earlier but g is on the
order of 1 (e.g., 2.7285 for 1H, 0.85744 for 2H, 0.70241 for
13C, etc.). Thus, the energies of the (nuclear spin)–(electron
spin) interaction WI ·s and the (nuclear spin)–(electron
orbit) interactions WI ·l are both on the order of

WI ·s ∼ WI ·l ∼ κ4Ws·l ∼ κ4α2Ry ∼ 10−3 cm−1 ∼ 30 MHz
(18)

The accurate formula for WI ·s for the H atom was
derived by Fermi using a perturbation treatment of the
Dirac equation with the nuclear magnetic vector potential
U = [µ.r]/r3. The hyperfine splitting between the two
levels F = 1 and 0, in which s is parallel and antiparallel
to I were derived as 8πgµNµB|ψ(0)|2 where |ψ(0)|2 is
the probability of finding the electron at the position of the
nucleus (the Fermi contact term). For the H atom, this term
which is nonvanishing only for S electrons (l = 0), can be
combined with the nuclear spin-electron orbit interaction,
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which is nonvanishing for other electrons in a formula,

∆WI ·s = g
m

Mp
α2Ry

2(2j + 1)

n3(2l + 1)j (j + 1)
(19)

Readers are referred to Bethe and Salpeter (1977) for
derivation and more discussions of the interaction. For
the H atom, the splitting between the F = 1 and 0 spin
state appears at 1420.405752 MHz (the famous 21-cm line),
which is considerably higher than α2κ4Ry because m/Mp

is much higher than 10−4, g ∼ 2.73, and because of the
quantum number dependence.

For nuclei with I � 1, observable hyperfine splittings
are produced by the nuclear electric quadrupole interaction
whose order of magnitude is estimated as follows. The size
of a nucleus has been observed to be on the order of the
classical electron radius,

r0 = e2

mc2
= 2.818 × 10−13 cm (20)

the distance from the center to the point at which the mag-
nitude of the Coulomb energy is comparable to the electron
rest mass energy. Comparing this with the expression of the
Bohr radius a0, we note

r0 = α2a0 (21)

The electrostatic potential theory shows that the electric
charge e, the dipole moment µ ∼ er , the quadrupole
moment Q ∼ er2, etc., interact with the electric potential
ϕ ∼ e/r , the electric field E = −∇ϕ ∼ e/r2, the electric
field derivative ∇ · E ∼ −2e/r3, etc., respectively (Landau
and Lifshitz Vol. II). Energy of the electric quadrupole
interaction is

WeqQ = 1

3!

∑
αβ

Qαβ

∂2

∂α∂β
· e

r
∼ er2

0 · e

a0
3

∼ α4Ry ∼ 10−3 cm−1 ∼ 30 MHz (22)

that is, comparable to WI ·s . Since nuclei have a wide range
of charge and shape, the actual quadrupole coupling con-
stant eqQ (q for the field gradient of electron distribution
and Q for the nuclear quadrupole moment) varies widely
from a high value of 127I (∼2000 MHz) to a low value of 2H
(<0.2 MHz). Similar arguments show that the order of mag-
nitude of the magnetic octopole interaction and the electric
hexadecapole interactions are on the order of ∼α6κ4Ry

and ∼α8Ry, respectively, which are both on the order of
10−11 cm−1 ∼3 Hz and are negligible in the context of this
chapter. The order of magnitude of hyperfine structure dis-
cussed in this section applies also for molecules.

2.2 Molecular Interactions

It will be shown that the known magnitude of molecular
terms corresponding to the energy of electronic motion,
nuclear vibration and rotation can be obtained as terms of
a power series expansion in the fourth root of the ratio of
the electron mass to (average) nuclear mass.

Born and Oppenheimer (1927) Ann. Phys. 84, 457

2.2.1 The Born–Oppenheimer Constant

The atomic interactions discussed in the previous section
also occur in molecules, and their orders of magnitude are
comparable in atoms and molecules. A molecule has addi-
tional motion of vibration and rotation and their interactions
with electrons. The Born–Oppenheimer constant

κ =
(m

M

) 1
4 ∼ 10−1 (23)

plays the central role in sorting out their orders of mag-
nitude. Since M is an “average” nuclear mass, κ is not a
unique number like α. For example, it is 0.15274, 0.08223,
and 0.06093 for 1H, 12C, and 32S, respectively, but it is on
the order of 0.1. Like α, someday the values of m/Mp etc.,
will be explained but for now we just use them as constants.

2.2.2 Rotation and Vibration

We first recall that Planck’s constant h has the dimension
of action

∫
pdq and angular momentum (angular action)

r × p. It is the action and angular momentum that is
quantized to �; the quantization of energy is secondary. The
angular momentum is on the order of � for low quantum
number regardless of motion. The angular momentum of
an electron rmν and molecular rotation RMV r are both
on the order of �. Since for a small molecule, electronic
orbital radius r is comparable to internuclear distance R, we
have mv ∼ MVr, that is, the nuclear velocity of rotational
motion is on the order of Vr ∼ κ4v ∼ κ4αc ∼ 300 m s−1,
comparable to the sound velocity. Thus, for a low rotational
quantum number, the order of magnitude of the rotational
energy is

Wrot ∼ 1

2
MV 2

r ∼ κ4Ry ∼ 10 cm−1 (24)

comparable to the spin–orbit and spin–spin interaction of
electrons. This gives the order of magnitude of rotational
constants of simple molecules.

The energy of molecular vibration is expressed in terms
of force constant k, amplitude of vibration δR, reduced
mass µ, and nuclear velocity of vibration Vv as

Wvib = k(δR)2 = µV 2
v (25)
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6 Orders of Magnitude and Symmetry in Molecular Spectroscopy

where the virial theorem is used. If δR is made comparable
to the internuclear distance R, the potential energy becomes
comparable to the dissociation energy, which is on the order
of Welec, that is,

|Welec| ∼ 1

2
kR2 ∼ 1

2
mv2 (26)

Using these two formulae together with quantization of
action, µVvδR ∼ mvr ∼ �, and r ∼ R, and µ ∼ M , we
have

Vv ∼ κ3v ∼ 3 km s−1 and Wvib ∼ κ2Ry ∼ 1000 cm−1

(27)
which appears in the infrared. We also see that δR ∼ κR

and Vr ∼ κVv.
There is an important interaction between vibration and

rotation in polyatomic molecules called the Coriolis inter-
action (Teller and Tisza 1932). This is due to the appar-
ent Coriolis force because of vibrational motions in the
rotating molecular frame. The magnitude of this effect as
an operator is on the order of the rotational energy, i.e.,
∼κ4Ry.

The original nonrelativistic molecular Hamiltonian is

Ĥ = − �
2

2m

∑
i

∇ i
2 −
∑

n

�
2

2Mn
∇n

2 +
∑
i>j

e2

|ri − rj|

+
∑
m>n

ZmZne
2

|Rm − Rn| −
∑
n,i

Zne
2

|Rn − ri| (28)

After solving and separating the electronic Hamiltonian,
we obtain the general and rigorous Wilson–Howard–
Watson Hamiltonian (Wilson and Howard 1936, Watson
1968) for the vibration and rotation,

Ĥ = �
2

2

∑
α,β

µαβ(Jα − πα)(Jβ − πβ) + 1

2

∑
k

P 2
k

−�
2

8

∑
α

µαα + V (29)

where µαβ are components of the effective reciprocal
moment of inertia tensor µ and πα and πβ are components
of vibrational angular momentum π . The Coriolis interac-
tion is contained in equation (29) as the coupling (product)
of rotational angular momentum J and vibrational angular
momentum π .

The moment of inertia tensor I, and thus its effective
inverse µ is a function of vibrational coordinates. Since
δR/R ∼ κ , the first term of equation (29) can be expanded
in an infinite power series of vibrational coordinates whose
orders of magnitude scales with the power of κ (Oka
1967). A perturbation treatment of the first term in the

expansion gives the centrifugal distortion correction. Since
the order of magnitude of the first term is ∼κWrot ∼ κ5Ry

and the vibrational separation is ∼κ2Ry, the second-order
perturbation gives the quartic centrifugal distortion constant
on the order of κ8Ry ∼ 30 MHz.

Near the equilibrium, the vibrational potential V in
equation (29) can also be expanded in terms of dimension-
less normal coordinates as

V̂ = 1

2

∑
k

ωqk
2 + 1

3!

∑
klm

kklmqkqlqm

+ 1

4!

∑
klmn

kklmnqkqlqmqn + · · · · · (30)

where the terms have orders of magnitude κ2Ry, κ3Ry,
κ4Ry, . . .. This hierarchy in the order of magnitude allows
for a systematic treatment of vibration–rotation interactions
by perturbation theory, or contact transformation. Exten-
sive results up to the fourth-order perturbation, applicable
in general to all molecules with small amplitude of vibra-
tion, are given by Aliev and Watson (1985). The orders
of magnitude of all terms as operators follow the rule that
the vibrational operator p and q carry the magnitude κ

and the rotational operator J 2 carries the magnitude κ4

(it is discussed later that odd powers of J cannot appear
in the Hamiltonian unless it is coupled with electronic or
vibrational angular momentum because of the time rever-
sal symmetry). Thus we see that the order of magnitude
of vibrational frequency ν, rotational constant B, vibra-
tion–rotation constant α and �-type doubling constant q�,
quartic centrifugal distortion constant D, sextic centrifugal
constant H , etc., are κ2Ry, κ4Ry, κ6Ry, κ8Ry, κ12Ry,
respectively. The first-order Coriolis interaction is on the
order of κ4Ry, while in the second order it is κ6Ry. This
rule applies, in general, to the dependence on vibration and
rotation of operator for any physical quantity f . Thus for
a series expansion,

f̂ = fe +
∑

k

fkqk + 1

2

∑
kl

fklqkql + 1

3!

∑
klm

fklmqkqlqm

+ 1

4!

∑
klmn

fklmnqkqlqmqn + · · · · +
∑
αβ

fαβJαJβ + · · · · ·

(31)
the order of magnitude of the coefficients fe, fk, fkl,
fklm, fklmn, and fαβ are f , κf , κ2f , κ3f , κ4f , and κ4f ,
respectively, unless they are forbidden by symmetry.

The energy of diatomic molecules is expressed in Dun-
ham’s series,

W =
∑

l,j

Ylj(v + 1

2
)l[J (J + 1)]j (32)
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which is slightly modified from the original expression
in that the electronic energy is incorporated in Y00 for
convenience. Since <(p2 + q2)/2> = (v + 1/2), the above
rule shows that the order of magnitude of Ylj is κ2l+4jRy .

2.2.3 Nuclear Magnetic Interactions

The orders of magnitude of fine and hyperfine interactions
discussed for atoms apply equally to molecules although
for ordinary molecules all electrons are paired and fine
structure does not appear. This applies also for protonated
ions such as H3

+, H3O+, NH4
+, CH5

+, other important
cation like CH3

+, and anions such as OH−, NH2
−, etc. Fine

structure needs to be considered only for radicals and ions
with unpaired electrons, for electronic-excited multiplet
states, or for some exceptional cases when the ground state
is a multiplet. Ordinary molecules have extremely small
magnetic interactions related to nuclear magnetic moments.

The rotational motion of molecules introduces a rota-
tional magnetic moment µrot that does not exist for atoms. It
results from an imbalance of the negative magnetic moment
due to electrons and the positive moment due to nuclei.
They do not balance even in neutral molecules since the
magnetic moment µrot is proportional to er2ω/2c, where
ω is the angular velocity vector of molecular rotation, and
the value of <r2> is different for electrons and nuclei.
Since r2ω ∼ �/M , µrot is on the order of the nuclear
magneton. We therefore have the extremely small (nuclear
spin)–rotation interaction,

WI ·J ∼ WI ·I ∼ κ8α2Ry ∼ 10−7 cm−1 ∼ 3 kHz (33)

The direct and indirect I · I interactions WI·I for mole-
cules with more than one nucleus with I ≥ 1/2 are also
on this order of magnitude as seen from WI·I ∼ µN

2/a0
3.

This miniscule hyperfine structure is observable only by
ultrahigh resolution spectroscopy in the gas phase or in
NMR spectroscopy (where the indirect I · I interaction
appears as chemical shift). However, the smallness of these
interactions compared to rotational energy (10−8) has a far
reaching important implication in symmetry classification
of molecular terms and stability of spin modifications as
seen below and in the next section on symmetry.

Molecules in multiplet states have (electron spin) −
(nuclear spin) and (electron spin) − rotation interaction
which are on the order of

WI ·s ∼ WJ ·s ∼ κ4α2Ry ∼ 10−3 cm−1 ∼ 30 MHz (34)

2.2.4 Mixing of Eigenfunctions

Finally we discuss orders of magnitude of Hamiltonian
for interactions of different motion and their effect in

mixing eigenfunctions. We have already discussed the
vibration–rotation interaction above. For simplicity, we
limit the discussions only to molecules where all electrons
are paired and there is no magnetic interaction of electrons.
Born and Oppenheimer separated the total Hamiltonian into
electronic, vibrational, and rotational parts. We add the
nuclear magnetic effect to this and write

Ĥ = Ĥe + Ĥv + Ĥr + Ĥn (35)

We have seen that orders of magnitude of the terms are
in the ratio of 1:κ2:κ4:κ8α2.

If the Hamiltonian terms are completely separated as
above, the total eigenfunction for a quantum state is simply
a product of eigenfunctions for the individual Hamiltonian

ψ0
total = ψ0

eψ
0
vψ

0
r ψ

0
n (36)

For actual molecules, however, the terms are not com-
pletely separable; there are terms such as the vibronic inter-
action, Ĥev, which depends both on the electronic variables
and vibrational variables, the vibration–rotation interaction,
Ĥvr, and the rotation–(nuclear spin) interaction, Ĥrn. The
orders of magnitude of those mixing terms are equal to that
of Hamiltonian with lower energy; thus magnitude of Ĥev,
Ĥvr, and Ĥrn are on the order of κ2Ry, κ4Ry, and κ8α2Ry,
respectively. We ignore other mixing terms such as Ĥer and
Ĥvn for simplicity since their effect is minor.

In the presence of the off-diagonal Hamiltonian, the
eigenfunctions are no longer a simple product but a linear
combination of products. For example, Ĥvr introduces a
linear combination

ψ0
vψ

0
r +

′∑
v′r ′

〈v′r ′|Hvr|vr〉
Ev − Ev′

ψ0
v′ψ0

r ′ (37)

The coefficient of the second term is on the order
of κ2 for low rotational levels but is much larger for
high rotational levels. For the rotation nuclear spin inter-
action, however, the mixing is extremely small since
<r ′n′|Hrn|rn>/(Er − Er ′) ∼ κ4α2 ∼ 10−8. Therefore we
can write the total eigenfunction as

ψ total = ψevrψ
0
n (38)

to a very good approximation, where ψevr may be a
complicated linear combination of the product of ψ0

eψ
0
vψ

0
r

but ψ0
n is the pure nuclear spin eigenfunction. This is the

essence for the stability of nuclear modifications such as
ortho- and para-H2, and ortho-, para-, and meta-CH4, etc.,
as we see in the next section. This is also the reason why
the symmetry classification separately of ψevr and ψ0

n is so
nearly rigorous and useful in molecular spectroscopy.
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kHz MHz GHz THz Frequency (Hz)

103

103 106 109

106

10−6 10−3

109 1012 1015 1018

1

Wavenumber (cm−1)

Wavelength km m cm mm µm nm

LF HF VHF Mw IR UV X-ray γ-ray

Å

Wcent Wvr

WeqQ

Wrot Wvib Welec mc2
a2

a2

a2

a

k2k2k2

k4k4

k2

WQED

Wj-s
Wi-s
Wi-

Ws-
Ws-s

Wi-i
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Figure 1 Summary of orders of magnitude of atomic and molecular interactions. Wvr stands for vibration–rotation constant α, and
�-doubling constant q�, and Wcent stands for quartic centrifugal distortion constant D,DJJ , DJK , ∆, etc.

The discussions given above have dealt with the elec-
tronic energy and all couplings of the possible angular
momenta, that is, those of electrons (orbital l and spin s),
and nuclei (vibrational π , rotational J, and spin I ). Those
interactions, plus the electromagnetic multipole interaction,
exhaust all possible intramolecular interactions. They are
summarized in Figure 1 according to their orders of mag-
nitude. A few words of caution are in order.

1. They are order of magnitude estimates. We are not
concerned about a discrepancy by a factor of several
for higher energies. For lower energies, the estimate
can be off by a few orders of magnitude because
of individual molecular properties and widely ranging
nuclear properties.

2. We are primarily considering small, simple molecules
composed of a small number of light nuclei. For heavier
molecules vibrational and rotational energies and κ

are lower but the expansion in terms of κ remains
useful in the systematic treatment of vibration–rotation
interactions.

3. The orders of magnitude are for unit quantum numbers.
They are for molecular constants. For a high quantum
number with J > 10, for example, the rotational energy
may exceed the vibrational energy.

4. Some of the interactions may not be allowed by
symmetry.

Even with the above qualifications, there are exceptions.
For example, the �-type doubling constant of H3

+ is

5.38 cm−1 (Oka 1980), which is more like the order of
magnitude of rotational constant, because of the small mass
and relatively shallow potential surface.

3 SYMMETRY

When we look at a new spectrum, it is the qualitative
aspects of the spectrum that strike us first. This is par-
ticularly true for plasma (ion and radical) spectroscopy in
which we do not know the carrier of a spectrum beforehand.
The qualitative fingerprints of the spectrum, its symmetry,
regularity and irregularity, intensity alternation and absence
of certain lines, multiplicity and fine structure, the presence
of hyperfine structure, etc., are the keys to understanding
the spectrum and identifying its carrier. These qualitative
features are understood by studying the symmetry of molec-
ular Hamiltonian. Such symmetry arguments are useful for
atomic spectroscopy but are more explicit and multifaceted
in molecular spectra because of the presence of the sym-
metry of permutation of nuclei.

Unlike the subject of the previous section, molecular
symmetry and its application to spectroscopy have been
discussed in many textbooks and there is no point repeat-
ing them. Here, the discussions are limited to the very
fundamental and are not exhaustive. The electronic and
vibrational symmetries are discussed in the textbooks by
Herzberg (1989) and Wilson et al. (1980) and the discus-
sions are limited to rotational symmetry.
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3.1 General Remarks

The root of all symmetry principles lies in the assumption
that it is impossible to observe certain basic quantities; these
will be called ‘non-observables’.

Lee (1981)

We begin by stressing that it is not the geometrical sym-
metry of molecules that primarily concerns us. We are
interested in rigorous operations that leave the molecular
Hamiltonian invariant. The logical structure of the symme-
try argument is well represented by the chart in Figure 2
due to Yang (1958). The symmetry is equal to the invari-
ance. The invariance of a Hamiltonian leads to conservation
laws of physical quantities (Noether’s theorem). In quan-
tum mechanics, the conservation laws lead to quantum
numbers and their selection rules. If the symmetry is rig-
orous, the corresponding quantum numbers are good and
the selection rules are rigorous; if the symmetry is bro-
ken by some interaction, the quantum numbers are not
good and the selection rules are violated. Readers are
referred to Goldstein (1980) for a proof and more details
of Noether’s theorem.

The following operations leave the molecular Hamilto-
nian invariant and are relevant for discussion of symme-
try in molecular spectroscopy. For each operation, Lee’s
nonobservable is given in parentheses.

1. Continuous space-time symmetry:
(a) time translation t → t + τ (absolute time).
(b) space translation r → r + ρ (origin of space).
(c) space rotation r → Dr (absolute direction).

2. Discrete space-time symmetry:
(d) space inversion r → −r (absolute left and right).
(e) time reversal t → −t (absolute direction of

motion).
3. Permutation of identical particles (difference between

identical particles).

Symmetry Invariance

Conservation
laws

Other
consequences

Quantum
numbers

Selection 
rules

(Except for discrete symmetry
in classical mechanics)

(In quantum mechanics only)

Figure 2 Relation between conservation laws and symmetry
laws (Yang 1958).

The matrix D in (c) is the rotation operator in Eulerian
angles. The operations in (1) are continuous in the
sense that τ , ρ, and D can take any value.

3.1.1 Continuous Space-time Symmetry

The symmetry of physical laws with respect to the opera-
tions (a), (b), and (c) leads to conservation laws of energy,
momentum, and angular momentum, respectively. In the
history of physics, those invariance and conservation laws
have been suspected at times, but never been shown to
break down. Readers are referred to Vol. I and III of Landau
and Lifshitz for proofs of the conservation laws in classical
and quantum mechanics, respectively.

Of the three conservation laws, the conservation of
angular momentum due to (c) and its consequences are the
most colorful. It appeared first as Kepler’s empirical second
law of planetary motion: the radius vector sweeps out equal
areas in equal times. Newton showed that it is a result
of isotropy of the Sun’s gravitational field. Conservation
and quantization of angular momentum is the cornerstone
of quantum mechanics. The orbital angular momentum
l of the electron in the hydrogen atom in the isotropic
Coulomb potential of the proton is quantized and leads
to the azimuthal (l) and magnetic (m) quantum numbers
and the spherical harmonics Ylm(θ, φ) as its eigenfunction.
These eigenfunctions are irreducible representations of the
continuous rotation group SO(3).c

The electron also has spin angular momentum with a
value of �/2, which was introduced empirically to under-
stand atomic spectra, especially the multiplicity and Zee-
man effect, and later shown by Dirac to be a natural
consequence of the unification of quantum mechanics and
relativity. Readers are referred to Tomonaga (1997) for
the history and physics of spin. Unlike the orbital angu-
lar momentum whose quantum numbers l, m are integers
and may take a large value, the quantum number of electron
spin is limited to s = 1/2 with its two components ±1/2.
Although initially introduced with a classical image (hence
the name spin), spin is a purely quantum mechanical con-
cept without classical interpretation and its two-component
eigenfunctions follow special mathematics of spinors whose
transformation forms the SU (2) group. Readers are referred
to Vol. III of Landau and Lifshitz and Lecture 7 of Tomon-
aga (1997) for spinor algebra. In the context of this book, it
suffices to note that, unlike spherical harmonics, the eigen-
function for spin 1/2 does not come back to original form
under rotation of 2π but changes sign and comes back to
the original form only after rotation of 4π . Nevertheless,
SU (2) is a covering group of SO(3) and we can treat spin
operator ŝ like orbital angular momentum operator l̂ in vec-
tor additions. It should also be noted that, unlike orbital
angular momentum, which is not good in a molecule due



FI
R

ST
 P

AG
E 

PR
O

O
FS

HRS hrs074.tex V1 - 10/07/2009 5:06pm Page 1
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to lack of spherical symmetry, the integrity of spin angular
momentum of an unpaired electron is intact in a paramag-
netic molecule. In a nonmagnetic molecule where all elec-
trons are paired, the spin angular momentum and associated
magnetic fields completely vanish due to the principle of
superposition.

The proton and the neutron also have spin angular
momentum I with I = 1/2 and their composite atomic
nuclei have spins with quantum number I ranging from
0 (4He, 12C, 16O, 20Ne) to quite high numbers (I = 7 for
176Lu). The electron spin and nuclear spin with I 	= 0 cause
fine and hyperfine structures, respectively, and enrich spec-
troscopy. However, the most significant and universal effect
of spin is the symmetry requirement upon exchange of
particles whose consequence pervade all sciences. The per-
mutation symmetry which is discussed later is the central
theme of this section.

Isotropy of space also leads to the conservation of angu-
lar momentum J of overall molecular rotation and asso-
ciated quantum numbers. The eigenfunctions are spherical
harmonics YJm(θ, ϕ) for linear molecules, the Wigner func-
tions DJ

mk(ϕ, θ, χ) for symmetric tops, and their arbitrary
and specific linear combinations for spherical and asym-
metric tops, respectively. Vibrational motion of a molecule
causes instantaneous angular momentum

∑
n rn × pn some

of which is conserved when the molecule has a symme-
try axis of more than a twofold rotation. This angular
momentum along the symmetry axis is a result of effec-
tive cylindrical symmetry of a harmonic oscillation and has
vibrational angular momentum quantum number � and the
eigenfunction ei�χ/

√
2π .

When a system has many angular momenta, they couple
in an intricate way, (Vol. III of Landau and Lifshitz),
but the total angular momentum is always conserved
because of (c). Thus for the H atom the total angular
momentum quantum number F for F = l + s + I is a
rigorous quantum number. Since the interaction between
the electronic angular momentum j = l + s and the nuclear
angular momentum I, Ws·I + WI·l, is small, j is a nearly
good quantum number. Likewise, for more complicated
atoms, F for F = L + S + I(L =∑i li, S =∑i si) is a
rigorous quantum number while J for J = L + S is a
nearly good quantum number. For a molecule, the total
angular momentum R = J + S + I(I =∑n In) is rigorously
conserved. For an ordinary nonmagnetic (S = 0) molecule
without a nucleus with I � 1, the interaction between J

and I is extremely small, WI·J ∼ 3 kHz and J is an almost
rigorous quantum number. If isotropy of space (c) is broken
by an applied electric or magnetic field, the total angular
momentum F gets mixed and ceases to be a rigorous
quantum number.

Conservations of total energy, total angular momentum,
and other symmetry properties to be discussed in the fol-
lowing sections, such as parity and permutation symmetry,
are also useful in dynamical problems where more than
one molecule is involved. Readers are referred to Section
II C of Oka (1973b) for their application to intermolecular
collisions and their selection rules.

Finally, there is an additional continuous space-time
symmetry operation, the Lorentz transformation, whose
nonobservable is absolute velocity. The Lorentz invariance
and symmetry resulting from this transformation, which
is central in relativity and electrodynamics, is seldom
used in spectroscopy. Readers are referred to Lecture 11
of Tomonaga (1997) for its use in deriving the Thomas
precession factor of 1/2. The invariance is also implicit in
any relativistic argument such as the spin–orbit interaction
given in Section 2.2.1.

3.1.2 Discrete Space-time Symmetry

Unlike the operations for the continuous space-time symme-
try which form Lie (continuous) groups with eigenfunctions
as their infinite number of irreducible representations, sym-
metry operations in this section and the next are discrete
and form finite groups whose irreducible representations are
simply given by numbers. They are all binary in the sense
that, if operated twice, they bring a classical system back
to its original state.d Like positive or negative, left or right,
or up or down, they are a “yes or no” type symmetry and
are most useful in quantum mechanics where the symmetry
of eigenfunctions and operators are to be discussed.

The space inversion r → −r, which will be hereafter
denoted by P̂ (for parity), reverses polar vectors such as
coordinate r, momentum p, electric field E, electric dipole
moment µe, and current j, while leaving intact axial vectors
such as angular momenta l, s, j, J, I, F, magnetic field H,
and magnetic dipole moment µm. The time reversal denoted
by T̂ reverses quantities involving motion, that is, angular
momenta, momentum p, current j, magnetic field and dipole
moment H and µm, and leaves, r, E, and µe intact. Clearly,
P̂ and T̂ leave the Maxwell equation and the spinless
molecular Hamiltonian given in equation (28) invariant.

In quantum mechanics, where Euler’s mathematics
involving i enters and plays a major role, the operation
of time reversal is not quite trivial. The commutation rela-
tions p̂xx − xp̂x = �

i
, etc., and the operator equivalence

p̂x = �

i
∂
∂x

, etc., which form the basis of quantum mechan-
ics are invariant for r → −r but not for t → −t alone.
The quantum mechanical time reversal operator T̂ needs to
be both t → −t and i → −i. The operator is expressed
as T̂ = Û K̂ where Û is a unitary operator for t → −t

and K̂ is a complex-conjugation operator i → −i. T̂ is an
antiunitary operator, which does not follow Dirac’s bra and
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ket algebra. While P̂ 2 = p2Î = Î , where Î is the identity
operator gives parity eigenvalues p = ±1, T̂ 2 = ±Î and T̂

does not have eigenvalues. Readers are referred to Saku-
rai (1985) and Sachs (1987) for in-depth discussions of the
antiunitary operator and consequences of the time reversal
symmetry.

The time reversal invariance requires that a dipole
moment of a particle has to be magnetic and cannot
be electric as mentioned earlier in Section 2.2.3. Any
detection of an electric dipole moment of a particle indicates
breakdown of the time reversal symmetry.e

Use of T̂ in molecular spectroscopy is somewhat limited.
It is used to find selection rules of matrix elements between
degenerate levels (Section 97 in Vol. III of Landau and
Lifshitz). Watson’s (1974) paper on the condition of the
first-order Stark effect (including that for CH4) with a
general theorem involving time reversal is more complete
and fertile. T̂ is also useful to judge if an operator is allowed
as a term in the molecular Hamiltonian. It shows that any
expression with odd powers of angular momentum is not
allowed. Such term multiplied by i has appeared in the
literature (Ozier et al. 1970). The term is invariant for T̂

but is not Hermitian, that is, its eigenvalue is not real and
thus is not allowed.

The inversion operation P̂ and its eigenvalue, parity,
are central to spectroscopy. It first appeared as Laporte’s
empirical rule to classify subsets of atomic states of Fe
that do not intercombine. All atomic states have unique
parities of either +1 or −1 (sometimes we say + or −,
or, even or odd ). All physical variables and their quantum
mechanical operators have unique parities, and if they are
multiplied, the total parity is obtained by simply multiplying
the individual parities. Scalars and axial vectors have +
parity while polar vectors have − parity. In the molecular
Hamiltonian given in equation (28), radial vectors r i , Rn,
etc., and the momentum operator ∇i, ∇n, etc., have −
parity, while |ri − rj |, etc., and ∇ i

2 etc., have + parity
resulting in the even parity of the Hamiltonian Ĥ .

Since the parity operation r → −r is represented in
polar coordinate as r → r , θ → π − θ , and φ → φ + π ,
P̂ Ylm(θ, ϕ) = (−1)lYlm(θ, ϕ), namely, parity of an atomic
orbital eigenfunction is given by (−1)l . For an atom
with many electrons, the parity is rigorously given by
(−1)l1+l2+·····. Spin eigenfunctions have + parity and spin
states do not affect the total parity. Together with the total
angular momentum quantum number F , the parity is a
rigorous quantum number and leads to rigorous selection
rules. Intra-atomic interactions 〈α|Ĥ |β〉 are nonvanishing
only between two levels α and β with the same parity, and
the electric and magnetic dipole transitions 〈α|µe|β〉 and
〈α|µm|β〉 occur between two states with opposite parities
and the same parity, respectively. The parity is central also
in molecular spectroscopy and is discussed in Section 3.3.2.

P̂ and T̂ together with the charge conjugation opera-
tion Ĉ (particle–antiparticle symmetry) form the basis of
elementary particle physics. It was shocking news in 1956
when experiments showed that parity is not conserved in the
weak interaction. With the unification of electromagnetic
and weak interactions it is known that parity is violated in
molecules by an extremely small amount. This small effect
is probably difficult to detect in nonmagnetic molecules.f

Since the parity violating Hamiltonian is a product of an
axial and polar vectors, a free radical with an unpaired
electron near the center of chirality may lead to detection
of such an effect.

3.1.3 Permutation of Identical Particles

It [spin and statistics] appears to be one of the few places
in physics where there is a rule which can be stated very
simply, but for which no one has found a simple and easy
explanation. The explanation is deep down in relativistic
quantum mechanics. This probably means that we do not
have a complete understanding of the fundamental principle
involved.

R. P. Feynman (1966)

The permutation operation of identical particles, (12), is
like the parity operation in that (12)2 = Î and its eigenvalue
is +1 or −1. However, for a system with many identical
particles, group theory is needed as we see in the next
section. While the Ĉ, P̂ , T̂ operations are central in particle
physics, the permutation of electrons and that of identical
nuclei together with P̂ are central in atomic and molecular
physics. Especially, the permutation of identical nuclei
together with the parity operation is essential for specifying
molecular symmetry as discussed in the next section. The
concept of identical particle does not exist in classical
physics and the permutation symmetry applies only to
quantum mechanics. The permutation symmetry of identical
particles first appeared in Pauli’s (1925) statement, “[t]here
can never be two or more equivalent electrons in an atom.”
It was an ad hoc assumption needed to explain the stability
of atoms and Mendeleev’s periodic table introduced with
an apology “[w]e cannot give a deeper explanation of
this rule.” In 1926, Heisenberg and Dirac independently
represented Pauli’s statement as

(12)ψ = −ψ for fermions (particle with half-integer spin)

and

(12)ψ = ψ for bosons (particles with integer spin) (39)

where ψ is the total eigenfunction of a system. The first of
these formulae applied to electrons is equivalent to Pauli’s
statement and Dirac coined the term Pauli’s exclusion
principle. This term, which is sometimes called the Pauli
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principle is often used to mean the two generalized
principles given above in total; we follow this convention.

The symmetry requirement under the (12 ) operation and
its relation to spin is the foundation of the Bose–Einstein
statistics and the Fermi–Dirac statistics discovered in 1924
and 1926, respectively. It is the most ingenious design of
nature that governs all of science. If the rule ceases to hold,
all electrons in atoms would fall down to the 1s orbital and
there would not be chemical bonds. All electrons in the
core of a white dwarf would fall down to the phase space
of lowest energy and the stars would become black holes.
Its effect is so overwhelming and obvious and yet it is hard
to explain. Pauli published his explanation in 1940 and
concluded “. . ..according to our opinion the connection
between spin and statistics is one of the most important
applications of relativity theory.” Readers are referred to
Tomonaga (1997) and Duck and Sudarshan (1997) for a
readable and more in-depth discussion, respectively, on spin
and statistics.

Wigner’s Near Symmetry The exchange of two identical
nuclei (12 ) means exchange of the whole set of variables,
that is, exchange of coordinates and momenta (R1, P1) and
(R2, P2), and nuclear spin I 1 and I 2. As is obvious from
Figure 3, this operation simply exchanges subscripts 1 and
2, and the whole system is identical physically. Clearly the
operation leaves the Hamiltonian invariant. Wigner (1933)
noted in the third paper of his trilogy on the general theme
of “noncombined terms in the new quantum theory” that
“the special stability of para-H2 is based on a symmetry
property of the quantum mechanical energy operator of the

Wigner

R2

R2

R1

R1

R2

R1

P1

P2

P2

P1

P2

P1

(12)

I2

I2

I1

I1

I1

I2

Figure 3 Permutation operation (12 ) and Wigner’s near-
symmetry operation.

hydrogen molecule; it is not only invariant when the entire
set of coordinates of both protons are exchanged but also
nearly invariant when only the Cartesian coordinates are
exchanged leaving the spin coordinates unchanged.” This
near symmetry used by Wigner to explain the stability of
ortho- and para-spin modifications of H2 applies to other
molecules and we call it Wigner’s near symmetry. The
operation is shown in Figure 3. For this operation, the
system is no longer invariant as for (12 ) but the difference
in energy is extremely small. As shown in the previous
section, the difference is on the order of WI·J ∼ WI·I ∼
κ8α2Ry ∼ 3 kHz, which is smaller than the next hierarchy
of molecular energy Wrot ∼ κ4Ry ∼ 10 cm−1 by 108. As
shown in the next section, Wigner’s near symmetry is
not only the basis of the stability of spin modification
(to be discussed in Section 3.3.3) but also the basis
of the rigor of overall symmetry classification using the
permutation–inversion group.

3.2 Molecular Symmetry Group

3.2.1 Permutation (Symmetric) Group

There exists a well-developed mathematical theory, which
one can use here; the theory of transformation groups,
which are isomorphic with the symmetric group (the group
of permutation).

Wigner (1927)

The concept of permutation symmetry was introduced
in attempts to find a general method to solve algebraic
equations by Lagrange and Vandermonde and used by
Ruffini and Abel to demonstrate unsolvability of quintic
equations. Clearly, the equation

∏n
i=1(x − xi) = 0 is invari-

ant for any permutation of x1, x2 · · · · · xn, just like the
molecular Hamiltonian equation (28) is invariant for any
permutation of electrons and identical nuclei. The concept
of group was implicit in those works but it was explic-
itly introduced together with the word “group” by Évariste
Galois (1831), barely 19 years old.g After the groundwork
by Cauchy, Cayley et al., Frobenius established the repre-
sentation theory in which each class of symmetry operations
is concisely expressed for each symmetry by a character in
a character table. Group theory was ready for applications
in quantum mechanics.

The theory was introduced to quantum mechanics by
Wigner (1927), with von Neumann’s advice in the sec-
ond paper of his trilogy in which the general spinless
n-electron problem was studied using the symmetric group
Sn. Compared with the first paper of his trilogy submit-
ted only two weeks earlier in which he treated a 3-electron
problem without using group theory, the enormous power
of the theory in saving work and generalization is obvious.
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Table 1 Character tables of symmetric group Sn. Broken lines separate even and odd
permutations.

S2 l (12)

[2] 1 1
[12] 1 −1

S3 l 2(123) 3(12)

[3] 1 1 1
[2, 1] 2 −1 0
[13] 1 1 −1

S4 l 8(123) 3(12)(34) 6(1234) 6(12)

[4] 1 1 1 1 1
[3, 1] 3 0 −1 −1 1
[2, 2] 2 −1 2 0 0
[2, 12] 3 0 −1 1 −1
[14] 1 1 1 −1 −1

S5 l 20(123) 15(12)(34) 24(12345) 10(12) 30(1234) 20(12)(345)

[5] 1 1 1 1 1 1 1
[4, 1] 4 1 0 −1 2 0 −1
[3,2] 5 −1 1 0 1 −1 1
[3, 12] 6 0 −2 1 0 0 0
[22, 1] 5 −1 1 0 −1 1 −1
[2, 13] 4 1 0 −1 −2 0 1
[15] 1 1 1 1 −1 −1 −1

Character tables for symmetric groups Sn for n = 2–5
are given in Table 1. Classes of operations are given hor-
izontally and irreducible representations vertically. Their
numbers are equal and given by number of partitions. For
n = 4, for example, there are five classes and representa-
tions corresponding to the five partitions.

4 = 1 + 1 + 1 + 1 2 + 1 + 1 2 + 2 3 + 1 4 which are expressed as
[14] [2, 12] [2, 2] [3, 1] [4] with operations
I (12) (12)(34) (123) (1234).

Readers are referred to Hamermesh (1964) for general
derivation of the character tables.

Every permutation can be written as a product of trans-
positions, (123 ) = (13 )(12 ), (1234 ) = (14 )(13 )(12 ), etc.
Depending on the number of transpositions, a permutation
is even or odd. Thus I , (12 )(34 ), and (123 ) are even per-
mutations while (12 ) and (1234 ) are odd permutations. All
symmetric groups Sn have representation [n] with character
1 for all classes of operation. A function whose transfor-
mation is expressed by this representation is called totally
symmetric. All Sn (n > 1) also have alternating representa-
tion [1n] with character +1 for even permutations and −1

for odd permutations. A function that transforms accord-
ing to this representation is called totally antisymmetric.
Because of the Pauli principle expressed by equation (39),
a total eigenfunction is totally antisymmetric for fermions
and totally symmetric for bosons. Thus, if we consider the
symmetry of the total eigenfunction, all levels have iden-

tical symmetry, represented either by [1n] or [n]. The rich
molecular symmetry classification results when we separate
the total eigenfunction into rovibronic eigenfunction ψevr
containing cartesian coordinates and the nuclear eigenfunc-
tion ψn

0 containing spins according to equation (38).

3.2.2 Point Group

Since the crystal is the most symmetric object in nature, it
was natural that the idea of symmetry and group theory
was first systematically used in crystallography. Around
1850, Auguste Bravais classified crystals systematically
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according to their symmetry and this was followed by
many mineralogists and mathematicians. The idea of a point
group based on three-dimensional geometrical operations
was introduced, so called because its elements such as
the axis of rotation Ĉn, plane of reflection σ̂ , center of
inversion Î , etc., share a point that does not move by the
operations. By the end of the nineteenth century, the theory
was complete for classifying structures of crystals.

The point group entered quantum mechanics when Bethe
(1929) published his paper on the crystal field splitting of
atomic levels. For symmetry classification of eigenfunc-
tions, a concept absent in classical physics, he simply used
Γ 1, Γ 2 . . . etc., for increasing order of irreducible repre-
sentations. The group theory was introduced into molecular
spectroscopy when Wigner (1930) used it to classify sym-
metry of normal vibrations. He used the crystal point group
notations such as Cs, C2v, C3v, Td, etc., to represent groups
and E, Cn, σ , Sn, etc., to specify the operations but left
blank the column of irreducible representations. Placzek
(1934) introduced the currently used symbols of irreducible
representations such as A (symmetric), B (antisymmetric),
E (“entartet”, doubly degenerate), F (triply degenerate),
subscript 1 and 2 (to specify symmetry with respect to C2)
and superscript′ and ′′ (to specify symmetry with respect
to σ ), etc. While a little unsystematic, the much-needed
nomenclature was immediately adopted by theorists like
Teller, Tisza, Mulliken, Wilson, and others, and has become
the fixture in molecular spectroscopy.

Initially, the point group was applied separately to elec-
tronic (ψe

0), vibrational (ψv
0), and rotational (ψ r

0) eigen-
functions, but Herzberg and Teller (1933) noted that use
of the symmetry of coupled vibronic eigenfunctions ψev
leads to more “strict selection rules”. Jahn (1938) also
used symmetry of rovibrational eigenfunctions ψvr in his
theory of Coriolis interactions. The symmetry of “over-
all” eigenfunctions of ψevr was first systematically given
by Landau and Lifshitz (the first version of Vol. III pub-
lished in 1947), which also included the parity of states.
Hougen (1962) showed the basis of the symmetry classifi-
cation for overall eigenfunctions for small nuclear displace-
ment from equilibrium position, but it was increasingly
clear that the point group is not satisfactory for symme-
try classifications of overall eigenfunctions especially for
molecules with large amplitude of motion in highly excited
states, or undergoing inversion and internal rotation. Mul-
liken (1941) was the first to publish a paper in which
symmetry classification by permutation–inversion group is
explicitly mentioned and applied to nonlinear AB2 type
molecules. Kasuya (1962) used permutation group for anal-
ysis of the microwave spectrum of inverting and internally
rotating hydrazine NH2NH2. Longuet-Higgins (1963) sys-
tematically introduced the permutation–inversion group,

and the molecular symmetry group, based on rigorous sym-
metry operations, was established.

3.2.3 Permutation Inversion Group

Permutation inversion groups include direct products of
the permutation groups Sn and the parity group I ∗ = S∗

1 ,
i.e., S∗

n ≡ Sn × I ∗ = I ∗ × Sn with 2n! operations and their
subgroups S∗

n/q. They are particularly useful for classifying
symmetry of molecular ions in which nuclei tend not to stay
in their equilibrium positions.

Direct Product S∗
n Character tables of S∗

1 , S∗
2 , and S∗

3
are given in Table 2. For convenience, the familiar Placzek
symbols are used for irreducible representations rather than
the partition number used for Sn in Table 1, and they are
ordered according to the convention of the point group.
Permutation operations I , (12 ) and (123 ), which corre-
spond to rotational operations (proper operations), and per-
mutation–inversion operations I ∗, (12)∗, (123)∗, which
correspond to sense reversing operations (improper opera-
tions) and the corresponding symmetry are kept in separate
blocks. This arrangement of character tables is similar to
that of Wilson et al. (1980). However, we use I instead of E

for the identity operation following Herzberg. For later use
for classifying vibronic eigenfunctions and rotational eigen-
functions, point group operations and rotational operations
corresponding to each permutation–inversion operation are
also given in the Tables. S∗

1 , S∗
2 and S∗

3 are isomorphic to
point groups Cs, C2v and D3h, respectively.

S∗
2 is applicable to planar molecules with two identical

nuclei such as H2O, H2CO, etc. It is also applicable to
nonplanar molecules with observable inversion splitting
such as NH2D and H2DO+, and with torsional splitting such
as H2O2 and H2S2. However, if the barrier to the tunneling
motion is high and the splitting is not observable, a
subgroup of S∗

2 suffices to classify the symmetry (Longuet-
Higgins’ feasibility of the motion). Thus subgroup S∗

2/2 to
be discussed below can be used for PH2D in which, unlike
in NH2D, the inversion splitting is not observable. For H2S2

where the torsional splitting is only 58 kHz, S2 suffices
for ordinary spectroscopy but the full S∗

2 group is needed
for ultrahigh resolution spectroscopy. For a molecule like
HCOOH, of course, the (12 ) operation is not feasible and
S∗

1 suffices.
S∗

3 is applicable to planar molecules with three identical
nuclei such as H3

+, CH3, CH3
+, etc. It is also applicable to

nonplanar molecules like NH3, H3O+, etc., with observable
inversion splittings. If the inversion splitting is too small to
observe as in PH3, the subgroup S∗

3/2 to be discussed below
suffices. An interesting case is protonated acetylene (vinyl
cation) C2H3

+ whose vibrational and rotational spectra are
clearly those of a nearly prolate asymmetric top and yet
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Table 2 Character tables of full permutation inversion groups S∗
n . Corresponding point group

operations and rotational operations, which act on rovibronic and rotational eigenfunctions,
respectively, are also listed in the second and the third rows. Vertical broken lines separate
proper and improper operations and horizontal broken lines separate + and − parity.

S∗
1 l l∗

CS l σXY

l C2(Z)

A′ 1 1
A′′ 1 −1

S∗
2 l (12) l∗ (12)∗

C2V l C2(X) σXY σ zx

l C2(X) C2(Z) C2(Y )

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

S∗
3 l 2(123) 3(12) l∗ 2(123)∗ 3(12)∗

D3h l 2C3(Z) 3C2(X) σXY 2S3(Z) 3σzx

l 2C3(Z) 3C2(X) C2(Z) 2C−1
6 (Z) 3C2(Y )

A1
′ 1 1 1 1 1 1

A2
′ 1 1 −1 1 1 −1

E′ 2 −1 0 2 −1 0
A1

′′ 1 1 1 −1 −1 −1
A2

′′ 1 1 −1 −1 −1 1
E′′ 2 −1 0 −2 1 0

their tunneling structure demonstrates that the three protons
are equivalent due to fast tunneling motions (Gabrys et al.
1995). This molecule has two sets of identical nuclei but
since the carbon nucleus is a boson with spin 0, they do
not affect the symmetry argument. The spectrum can be
explained using S∗

3 .
Cases for higher S∗

n had not appeared until recent
development in molecular ion spectroscopy. S∗

4 was used
for analysis of the Jahn–Teller effect in the ZEKE spectra
of CH4

+ and CD4
+ in a seminal paper by Wörner et al.

(2007). S∗
5 is needed for the infrared spectrum of protonated

methane, CH5
+, in which five equivalent protons are

swarming around the central carbon. This is a difficult
problem of a new prototype of vibration-rotation-tunneling
motion and assignment of the observed spectrum (White
et al. 1999) will take many decades (perhaps a century).
Whether spectral analysis of H5

+ requires the full S∗
5 group

or its subgroup S∗
3 × S∗

2 suffices depends on the widths
of spectral lines. For the highest resolution spectroscopy
without predissociation, it will certainly require S∗

5 .

Subgroups S∗
n/q For molecules with three equivalent

particles like PH3 and CH3OH, and those with four equiv-
alent particles such as CH4 and NH4

+, even permutations

are feasible but odd permutations are not, and reverse is
the case when combined with the inversion operation I ∗.
For example, for the S∗

4 group, 4! operations, I , 8(123 ),
3(12 )(34 ), 6(1234 )∗ and 6(12 )∗ are feasible and other 4!
operations are unfeasible. For such a case, a subgroup of S∗

n
composed only of feasible operations S∗

n/q suffices where q

is the quotient of the order of S∗
n divided by that of the sub-

group. For simple molecules mentioned above, S∗
n/2 with n!

elements and isomorphic to Sn are used; S∗
3/2 is isomorphic

to the C3v point group and S∗
4/2 is to Td. Their characters

are listed in Table 3. For larger molecules, there are more
unfeasible permutation–inversion operations and the quo-
tient is higher. For example, S∗

4/6 is used for ethylene and
S∗

6/60 is used for benzene.

3.3 Symmetry of Rotational Levels

3.3.1 Assignment of Symmetry

Total Eigenfunction Hereafter we assume totally sym-
metric vibronic state and consider only rotational wavefunc-
tions. Symmetry of the total eigenfunction ψ total = ψo

rψn
o

is governed by the Pauli principle, which involves the per-
mutation operation only. For S∗

n where the parity operation
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Table 3 Character tables of permutation inversion subgroup
S∗

n /2 composed of feasible operations.

S∗
2 /2 l (12)∗

l σ xy

l C2(Z)

A 1 1
B 1 −1

S∗
3 /2 l 2(123) 3(12)∗

l 2C3(Z) 3σzx

l 2C3(Z) 3C2(Y )

A1 1 1 1
A2 1 1 −1
E 2 −1 0

S∗
4 /2 l 8(123) 3(12)(34) 6(1234)∗ 6(12)∗

l 8C3 3C2 6S4 6σV

l 8C3 3C2 6C−1
4 6C2

′
A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
F1 3 0 −1 1 −1
F2 3 0 −1 −1 1

I ∗ is feasible, I ∗ can be considered separately. However,
for S∗

n/2 where I ∗ is not feasible, I ∗ and permutation
operations are interwoven and they should be considered
simultaneously (Oka 1973a); thus even though the Pauli
principle does not specify parity directly, certain parity
is required. For brevity we consider, here, only the cases
where the identical particles are protons (fermion, I = 1/2);
extensions to other nuclei are straightforward. For fermions
ψ total should be totally antisymmetric, that is, invariant for
even permutations and change sign for odd permutations.
Thus from character tables we see that the allowed sym-
metry of ψ total is B1 and B2 for S∗

2 , A2
′ and A2

′′ for S∗
3 ,

and A2(+) and A1(−) for S∗
3/2 and S∗

4/2 where the + and
− sign in parentheses represent the parity required from
the Pauli principle. Extension to higher S∗

n and S∗
n/q are

straightforward.

Nuclear Spin Eigenfunction Symmetry of nuclear spin
states is obtained by reducing the total character χ(G)

of the nuclear spin states for operation G to irreducible
representation χ(α)(G). The number of each χ(α)(G) is
given by

a(α) = 1

g

∑
G

χ(G)χ(α)(G) (40)

where g is the dimension of the group (Landau and Lifshitz
Vol. III). Just like the original meaning of the word,

character is the part of a subject that does not change by
an operation. For nuclei with spin I , we see it is given by
χ(G) = (2I + 1)n where n is the partition of permutation
G. For example, for CH4, we have

G I 8(123) 3(12)(34) 6(1234)∗ 6(12)∗

χ(G) 24 22 22 21 23

Thus the symmetry of ψn
o is

5A1 + 3F2 + E for S∗
4/2.

Note that E∗ does not operate on spin and does not affect
the counting. Likewise, we have

3A1 + B1 for S∗
2

4A′
1 + 2E′ for S∗

3
and 4A1 + 2E for S∗

3/2.

The relation between the symmetry of the ψn
0 and the

total nuclear spin quantum number I and spin modifications
such as ortho, meta, and para is discussed in Section 3.3.3.

Rotational Eigenfunctions Symmetry of a rotational
level is determined by rotational operations corresponding
to each permutation–inversion operations listed in Tables 2
and 3. For pure permutation operations, the correspondence
is obvious. For a permutation–inversion operation, the
correspondence is most directly seen from application of
the permutation followed by inversion. Two examples are
given in Figure 4.

+ +

H1

H2 H3
C2(Z)

I*

(1234)*

H3 H2

H1

1

2

4

3 4 2

3

1

I*

2

3

1

(1234)

C4
−1(Z)

4

Figure 4 Permutation–inversion operation and corresponding
rotational operation for S∗

3 molecule, H3
+, and S∗

4 /2 molecule,
CH4. For methane, black dots represent hydrogen and the central
carbon is omitted for simplicity. Note that (1234 ) and I ∗
individually are not feasible operations but (1234 )∗ is feasible.
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For asymmetric top molecules with S∗
2 symmetry, the

symmetry for rotational operations C2(X), C2(Z), and
C2(Y ) are considered. The energy levels are specified by
JKa,Kc, where Ka and Kc are projections of J onto a- and
c-axis, the axis of smallest and largest moment of inertia,
respectively. With the choice of the XYZ axes shown in
Table 2, c-axis is always Z-axis for a planar molecule but
the correspondence between (a, b) axes and (X, Y ) axes
depends on molecules; for H2O, (X, Y ) → (b, a) while
for H2CO, (X, Y ) → (a, b). The symmetry assignment for
rotational levels are

A1(ee), A2(oo), B1(oe) and B2(eo) for H2O

and A1(ee), A2(eo), B1(oe) and B2(oo) for H2CO,

where (ee) etc., specify whether Ka and Kc are even or
odd.

For symmetric top molecules with S∗
3 and S∗

3/2 symme-
try, the operations C3(Z) and C2(X) are considered. The
energy levels are specified by J and K and the eigenfunc-
tions are the Wigner function

DJ
mk(ϕ, θ, χ) = eimϕdJ

mk(θ)eikχ (41)

where φ, θ , and χ are Eulerian angles (Landau and Lifshitz
Vol. III) and m and k are signed quantum numbers for
M and K , the absolute values of projection of J onto a
space-fixed z-axis and molecule-fixed Z-axis, respectively.
C3(Z) changes χ → χ + 2π

3 and C2(X)θ → θ + π and
their eigenvalues (representations) are e2πki/3 and (−1)J ,
respectively. Thus for molecules with S∗

3/2 symmetry levels
have the following symmetry:

A1 for even J and A2 for odd J for K = 0

A1 and A2 for K = 3n(n 	= 0)

and E for K 	= 3n.

For molecules with S∗
3 symmetry, in which I ∗ operation

is feasible, we need to consider C2(Z) operation also. We
see rotational levels have the following symmetry:

A′
1 for even J and A′

2 for odd J for K = 0

A′
1 and A′

2 for K = 6n(n 	= 0)

A′′
1 and A′′

2 for K = 6n ± 3

E′ for K = 6n ± 2

and E′′ for K = 6n ± 1.

It is shown below that some of these levels do not satisfy
the overall symmetry required by the Pauli principle and
thus are not allowed.

For spherical top molecules with S∗
4/2 symmetry, rota-

tional operations C3, C2, and C4 are considered. Unlike the

previous two cases, there are no special axes and any axis
can be used. We take the space-fixed z-axis, which specifies
Eulerian angle ϕ and calculate characters using

χ(J)(ϕ) =
m=J∑

m=−J

eimϕ = sin(J + 1/2)ϕ

sin(ϕ/2)
(42)

where ϕ is 2π /3, π , and π /2 for C3, C2, and C4, respectively
(note that χ(J)(ϕ) does not depend on the sign of ϕ)
(Landau and Lifshitz Vol. III). Decomposing χ(J)(ϕ) using
equation (40) we have

A1 for J = 0

F1 for J = 1

E + F2 for J = 2

A2 + F1 + F2 for J = 3

and A1 + E + F1 + F2 for J = 4 etc.

Syntheses We now combine the rotational eigenfunc-
tion with symmetry Γ rot and the nuclear spin eigenfunction
with symmetry Γ nuc such that their product gives sym-
metry of the total eigenfunction Γ total, which satisfies the
Pauli principle, that is, Γ rot × Γ nuc ⊃ Γ total. The combi-
nations are listed in Table 4. For representations of order
1, the multiplication is obvious. For those of order 2,

Table 4 Combinations of rotational and nuclear spin eigenfunc-
tions which give total eigenfunctions satisfying the Pauli principle.

Symmetry Γ rot Γ nuc Γ total

S∗
2 B1, B2 3A1 (ortho) B1, B2

A1, A2 B1 (para)

S∗
3 A2

′, A2
′′ 4A1

′ (ortho) A2
′, A2

′′
E′, E′′ 2E′ (para)

S∗
2 /2 A(−), B(+) 3A(ortho) A(−), B(+)

+B(para)

A(+), B(−) Forbidden

S∗
3 /2 A1(−), A2(+) 4A1 (ortho)

E(±) 2E (para) A1(−), A2(+)

A1(+), A2(−) Forbidden

S∗
4 /2 A1(−), A2(+) 5A1 (meta)

F1(+), F2(−) 3F2 (ortho) A1(−), A2(+)

E(±) E (para)
A1(+), A2(−), Forbidden
F1(−), F2(+)
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we have E × E = A1 + A2 + E by multiplying characters
and decomposing the results to irreducible representations.
Likewise, we have F1 × F1 = F2 × F2 = A1 + E + F1 +
F2, and F1 × F2 = A2 + E + F1 + F2.

For S∗
2 , all levels are allowed but some levels are

forbidden for S∗
3 . For example, for H3

+ with S∗
3 symmetry,

levels with symmetry A′
1 and A′′

1 are forbidden, that is,
even J levels with K = 0, and the A′

1 component of
K = 6n (n 	= 0) doublet levels and the A′′

1 component of
the K = 6n + 3 doublet levels.

We discuss the parity and spin modifications (ortho, para,
etc.) in the next two sections.

3.3.2 Parity of Rotational Levels

Rigorous and Nearly Rigorous Symmetry We started our
discussion of symmetry by counting out rigorous symmetry
operations in Section 3.1. Out of the six operations, three
are important for molecular spectroscopy, that is, 1(c)
rotation of space, 2(d) inversion of space, and 3 permutation
of identical particles; they lead to the rigorous quantum
number F (for F=J+ I), parity, and the rigorous symmetry
of the total eigenfunction Γ total, respectively. In contrast,
quantum numbers J and I and symmetry Γ rot and Γ nuc are
not rigorous although they are very nearly rigorous because
of the smallness of the mixing term Hrn (Section 2.3.3).

The parity is useful for rigorous discussions of the
intramolecular interaction, selection rules, Stark and Zee-
man effects, etc., and even collisions. Just as all atomic
levels have unique parity, levels of most simple molecules
have unique parity. And yet parity of polyatomic molecules
has not been discussed in textbooks of molecular spec-
troscopy. Landau and Lifshitz (1981) is the only textbook
that discusses parity extensively. Here the use of parity in
energy-level diagrams is advocated. Use of the total nuclear
spin I , to be discussed in the next section, is also advocated
in addition to or in place of the Placzek symbol. Scientists
in other fields understand parity and I but the Placzek sym-
bol, albeit useful as shorthand, is a local language familiar
only to molecular spectroscopists.

Assignment of Parity For discussing parity, molecules
are classified into three categories (Oka 1973a): molecules
(I) for which the symmetry group includes the inver-
sion operation I ∗ like S∗

2 and S∗
3 ; molecules (II) for

which the group does not include I ∗ but includes per-
mutation–inversion operations like S∗

3/2 and S∗
4/2; and

molecules (III) for which the group does not include
sense reversing operations at all. The molecules (III) have
stereoisomers and the discussion of parity is irrelevant since
the inversion operation takes a molecule into its enantiomer
that cannot be overlapped with the original molecule.

Molecules (I) comprise all linear and planar molecules.
The assignment of parity for this class of molecules
is straightforward and is given in Herzberg (1989); the
symmetry with respect to I ∗ gives the parity. The I ∗
operation (X → −X, Y → −Y , Z → −Z) is equivalent
to a plane reflection of vibronic variables σXY , (Z → −Z)
and π rotation of the molecular frame, C2(Z) (X →
−X, Y → −Y ). Therefore, the parity of a rotational
level is determined by whether the angular momentum
quantum number along the axis perpendicular to the plane
of reflection is even or odd. Thus for linear molecules,
planar symmetric top molecules, and planar asymmetric
top molecules, the parity is given by (−1)J , (−1)K , and
(−1)Kc, respectively. For tunneling nonplanar molecules
like NH3 and NH2D with umbrella motion, we can assign
the parity by simply taking the product of the parities given
above and the symmetry of the split levels by the tunneling,
which is even for the lower level and odd for the upper
level. Almost all astrophysically important molecules such
as H2, CO, H3

+, HCO+, HCN, H2O, H2CO, NH3, H3O+

and many more belong to this category. Their levels are all
nondegenerate with single parity.h

For molecules (II), the discussion of parity is interwoven
with that of permutations as we have seen in Section
3.3.1. While for molecules (I) the parity information is
already included in Γ total given by the Placzek symbols, for
molecules (II) it is additional information. Using character
tables given in Table 3 and the results of synthesis in
Table 4, we can assign the parity to levels of S∗

3/2 and
S∗

4/2 molecules. For S∗
3/2 molecules, the parity for K = 0

levels is (−1)J+1. K = 3n (n 	= 0) levels are split into
A1 and A2 components (Oka 1967) with parity − and +,
respectively. Those levels combine with ortho-nuclear spin
state (I = 3/2). Levels with K 	= 3n are doubly degenerate
and have double parity (±) and combine para-spin state
(I = 1/2). For S∗

4/2 molecules CH4, the assignments are
shown in Figure 5.

Application Together with the total angular momentum
F , parity is useful for obtaining rigorous selection rules.
An intramolecular interaction 〈α|H |β〉 occurs only between
two levels α and β of the same parity and F . For example,
the off-diagonal spin-rotation interaction Hrn, discussed in
the next section, mixes ortho and para levels of H2O
or H2CO only between two levels with ∆Kc even and
∆F = 0. For S∗

3/2 molecules like PH3 or CH3F, the mixing
occurs within the set (A1 and E−) and (A2 and E+) but not
across. The mixing splits E+ and E− levels, thus lifting the
degeneracy of E± levels, although the splitting is extremely
small. Likewise for S∗

4/2 molecules like CH4 the mixing
occurs within the sets (A1, F2, E−) and (A2, F1, E+) but
not across the sets. Those results will be used in the next
section on the stability of spin modifications.
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Figure 5 Rotational energy levels and their symmetry for CH4
with spontaneous emission times. The centrifugal splitting of the
highest F1 level is magnified for clarity.

A mixing of levels by a static electric field and a
transition due to an oscillating electric field due to matrix
element 〈α|µe|β〉 occurs between two levels with opposite
parity, whereas a mixing by magnetic field due to 〈α|µm|β〉
occurs between two levels with the same parity. For this
reason, a molecular Zeeman effect for J 	= 0 always shows
first-order effect linear to the field, whereas the Stark effect
is first order only for levels with double parity. For S∗

3/2
molecules, the splittings of A1 and A2 levels with K = 3n

are usually small; their Stark effect starts out as second
order but changes to first order for relatively weak electric
fields. Rotational transitions and Stark effects exist even
for molecules that are usually considered to be nonpolar,
such as CH4 and H3

+, due to a breakdown of symmetry by
centrifugal distortion. This problem is discussed in Section
3.3.4.

The parity is used also for discussing intermolecu-
lar interactions. A rotational transition caused by weak,
long-range interactions obeys approximate selection rules
(Oka 1973b). In general, if a collision process between
molecules 1 and 2 without accompanying spontaneous
emission is considered, there exists a rigorous parity
relation

P1P2(−1)L = P ′
1P

′
2(−1)L

′
(43)

where P1 and P2 are the parities of the levels of colliding
molecules 1 and 2 and L is the angular momentum of
relative motion before the collision and P ′

1, P ′
2, and L′ are

those after the collision. A knowledge of parity is of use

for other molecular interactions such as photodissociation
or even chemical reactions if details of the interactions
are to be studied. Finally, it is of interest to ask whether
absolute parity means anything. If molecules are left in
an environment with very low temperatures long enough,
eventually they will all be in the lowest rotational level. The
parity of the lowest level is + for H2, CO, HCN, CH+,
H2O, etc., whereas it is − for H3

+, NH3, CH4, H3O+,
CH3OH, etc.

3.3.3 Nuclear Spin Modifications

Ortho, Meta, Para The total nuclear spin quantum
number I for the vector sum of kinetically equivalent
nuclei, I =∑n In is a robust quantum number that does
not change easily because of the extreme weakness of the
nuclear magnetic interaction. This was initially conjectured
by Dennison to explain the observed enigmatic temperature
dependence of the specific heat of H2 gas (see Tomonaga
1997) and confirmed clearly by successful preparation
in 1929 of pure para-H2 by Bonhoeffer and Harteck. It
is now well established that conversion between ortho
(I = 1) and para (I = 0) spin modifications not only
of H2 but also other molecules containing two protons,
such as H2O, H2CO, are almost rigorously forbidden
in spectroscopy (Herzberg 1989) and in collisions (Oka
1973b). The conversion is so slow that for studying their
thermalization in interstellar space, the two spin species
may be regarded as independent molecules. This applies
to the ortho (I = 3/2) and para (I = 1/2) species of three
proton molecules such as NH3, CH3F, etc., and the ortho
(I = 1), meta (I = 2), and para (I = 0) species of four-
proton molecules such as CH4.

The terms ortho and para were initially introduced for
the He spectrum empiricallyi and theoretically explained
by Heisenberg for the electron species in the atom. Heisen-
berg used the terms also for protons in H2.j Maue intro-
duced ortho, meta, and para for CH4 in the order of their
statistical weights 9:5:2, which gives their relative pop-
ulation at high temperature and this convention is fol-
lowed for other molecules. Thus for deuterium, I = 2
and I = 0 (symmetric with weight 6) are called ortho,
while I = 1 (antisymmetric with weight 3) is called
para.

Angular Momentum Algebra Symmetry of nuclear spin
modifications can also be discussed by using irreducible
representations of a rotation group using the almighty
formula for addition of angular momenta,

DI1 × DI2 = DI1+I2 + DI1+I2−1

+ · · · · · · + D|I1−I2| (44)
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Table 5 Representations and statistical weights of nuclear spin modifications.

n Examples Rotation group Pl group l (ortho) l (meta) l (para) Weight

2 H2, H2O D1 + D0 3A + B 1 0 3:1
3 NH3, CH3F D3/2 + 2D1/2 4A1 + 2E 3/2 1/2 4:4
4 CH4, NH4

+ D2 + 3D1 + 2D0 5A1 + 3F2 + E 1 2 0 9:5:2
5 CH5

+, H5
+ D5/2 + 4D3/2 + 5D1/2 6A1 + 4G1 + 2H1 3/2 1/2 5/2 16:10:6

Table 6

E 8C3 3C2 6S4 6σv

χ(MI = 2) 1 1 1 1 1
χ(MI = 1) 4 1 0 0 0
χ(MI = 0) 6 0 2 0 2

For spin I = 1/2, we have a general formula (Section
63, Landau and Lifshitz Vol. III),

(D 1
2
)n =

0,
1
2∑

I= n
2

(2I + 1) n!(n
2 − I

)
!
(n

2 + I + 1
)
!
DI (45)

where the first and the second index above
∑

apply for
even and odd n, respectively.

Results for n = 2–5 are in Table 5. Symmetry using the
permutation–inversion group is also given for comparison.
Note that the dimension and frequencies of a representation
are swapped between the rotation group and the permuta-
tion–inversion group. Table 5 can be readily extended to
molecules with larger numbers of protons although we run
out of the ortho, meta, and para nomenclature for more than
5 protons.

The symmetry of spin state I using the permuta-
tion–inversion group is obvious from Table 5 but it can
be derived independently using the point group operations.
For example, for a four-proton system of CH4 where we
have I = 2, 1, and 0 with MI = I , I − 1, . . . , −I , their
characters are •given in Table 6.

Q1

Those characters can be obtained by considering each MI

as a sum of spin pointing up (α; MI = 1/2) and down (β;
MI = −1/2) and counting out the number of arrangement
of α and β, which leave the operations invariant (Landau
and Lifshitz Vol. III). The characters for I = 2, 1, and 0
are obtained as given in Table 7.

Table 7

χ(I = 2) = χ(MI = 2) → A1

χ(I = 1) = χ(MI = 1) − χ(MI = 2) → F2

χ(I = 0) = χ(MI = 0) − χ(MI = 1) → E

This method can be readily extended for nuclei with
spin higher than 1/2. Thus, for example, for CD4, by
using arrows pointing three different direction, up, hori-
zontal, and down, we can calculate characters for each I

and obtain their symmetry, χ(I = 4) → A1, χ(I = 3) →
F2, χ(I = 2) → A1 + E + F2, χ(I = 1) → F1 + F2, and
χ(I = 0) → A1 + E. See Hougen (1976) for individual
eigenfunctions.

The use of angular momentum algebra to specify spin
modifications is useful for discussing spin selection rules
in chemical reactions (Oka 2004).

Transitions between Spin Modifications Since the spin
modifications ortho, para, etc., are not rigorous symmetry,
transitions between them are allowed albeit extremely
weakly. Even the spontaneous emission of H2, J = 1
(ortho) → J = 0 (para) is “allowed” although its lifetime
is much longer than the lifetime of the Universe (Raich and
Good 1964).j Since the mixing of eigenfunctions is given by
ε = 〈RI |Hrn|R′I ′〉/(ER − ER′), the mixing is much larger
for spherical top molecules where rotational levels with the
same J but different I are nearly degenerate except for
the small splitting due to tensorial centrifugal distortion.
Ozier et al. (1970) observed ortho (I = 1) to para (I = 0)
transition of CH4 in the J = 2 manifold by magnetically
shifting a component of Zeeman sensitive I = 1 levels to
less-sensitive I = 0 levels to close the gap of 7.2 MHz. For
a heavy spherical top molecule like SF6, the centrifugal
splitting is so minute that different I states are badly mixed
and many transitions between them are observed for free
molecules (Bordé et al. 1980).

For ordinary molecules, however, since Wrot ∼ 10 cm−1

and WI·J ∼ WI·I ∼ 3 kHz, the mixing is on the order of ε ∼
10−8 and the smallness of the number explains the stability
of spin modifications even in collisions as discussed below.

Conversion of Spin Modifications by Collision Curl
et al. (1967) were the first to develop a theory for molecular
spin conversion of polyatomic molecules by collisions. On
the basis of Wigner’s idea in Section 3.1.3, mixing terms for
nuclear spin states are those that are invariant for exchange
of both Cartesian and nuclear spin coordinates but are not
invariant for exchange of only Cartesian or nuclear spin
coordinates. Thus, for example, for S∗

2 molecules H2O and
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H2CO, the proper terms are

Ĥ ′
I·J = MXZ(I1X − I2X)JZ + MZX(I1Z − I2Z)JX + T r.

(46)
and

Ĥ ′
I·I = NXZ(I1XI2Z − I1ZI2X) + T r. (47)

where Tr. indicates transpose, i.e., JZ(I1X − I2X) for
(I1X − I2X)JZ , etc. The coordinate X, Y,Z is chosen as
in Table 2. Note that MXZ 	= MZX. Those terms are essen-
tially the same as given by Curl et al. (1967) albeit a little
more complete. There are other terms like (I1α + I2α)Jβ ,
I1αI2α, IIαI2β + I1βI2α (α, β = X, Y, Z), etc., but they are
diagonal in I and, although they contribute to hyperfine
structure, are irrelevant for conversion of spin modifica-
tions. The prime sign on Ĥ ′

I·J and Ĥ ′
I·I indicate terms off

diagonal in I .
Similarly, the mixing terms for S∗

3/2 molecule CH3F are

Ĥ ′
I·J = MXZ[(2I3X − I1X − I2X)JZ +

√
3(I1Y − I2Y )JZ]

+MZX[−(2I3Z − I1Z − I2Z)JY +
√

3(I1Z − I2Z)JX]

+MXY [{(2I3X − I1X − I2X) −
√

3(I1Y − I2Y )}JX

−{(2I3Y − I1Y − I2Y ) +
√

3(I1X − I2X)}JY ] + T r.

(48)

Ĥ ′
I·I = N+

ZX[2(I1ZI2X + I2ZI1X) − (I1Z + I2Z)I3X

− I3Z(I1X + I2X) −
√

3(I1Z − I2Z)I3Y

−
√

3I3Z(I1Y − I2Y )] + N−
ZX[2(I1ZI2Y − I2ZI1Y )

+ (I1Z − I2Z)I3Y − I3Z(I1Y − I1X)

−
√

3(I1Z + I2Z)I3X +
√

3I3Z(I1X + I2Y )]

+NXY [2(I1XI2X − I1Y I2Y ) − (I2XI3X + I3XI1X

− I2Y I3Y − I3Y I1Y ) −
√

3(I2XI3Y − I3Y I1X

+ I2Y I3X − I3XI1Y )] (49)

Curl et al. noted that there often exist accidental near
degeneracies between ortho and para levels on the order
of ER − ER′ ∼ 0.1 cm−1. For those levels ε ∼ 10−6 and
for each collision there is a probability of ε2 ∼ 10−12

to convert ortho ↔ para, in other words, the probability
approaches 1 after 1012 collisions. Thus, for collision rate
constant of ∼10−9 cm3 s−1 and pressure of ∼1 torr (n ∼
3.5 × 1016 cm−3) it takes several hours for conversion and
the conversion funnels through such near-degenerate levels.

Experimental measurements of the ortho – para con-
version rate have been pioneered and developed by
Chapovsky. He used the technique of light-induced drift

developed in the former Soviet Union to create a non-
thermal distribution in the ortho – para ratio and mea-
sured the recovery directly from the temporal varia-
tion of spectral intensities. With many collaborators,
Chapovsky obtained the ortho – para conversion rate of
(0.31 ± 0.03) × 10−3 s−1 torr−1 for 12CH3F and (14 ± 1) ×
10−3 s−1 torr−1 for 13CH3F. Both species have conversion
coefficient Mαβ and Nαβ on the order of a few kilohertz
and the large difference in conversion rate is simply due to
a difference of near degeneracy between the two isotopic
species. Readers are referred to Chapovsky and Hermans
(1999) for history, experiments, and theory of the field.
Conversion rate in CH3F is considerably faster than that
for H2O or H2CO because of the first-order Stark shift of
levels and resultant level crossings during collisions.

The recent experiment by Takagi and colleagues (Sun
et al. 2005) of separating the Ag (I = 2, 0), B1g, B2u,
and B3u (I = 1) spin species of ethylene and measuring
their conversion rate is noteworthy. The nomenclature of
ortho, para, etc., runs out and the spin species are simply
represented by symmetry. Their experiment clearly showed
that the conversion B2u ↔ B3u, which poses the same
parity, occurs in ∼10 min at the pressure of about 1 torr
but B2u ↔ Ag with opposite parity does not occur.

Although at such low pressure, the rate of conversion
is proportional to pressure, the proportionality does not
apply for much higher pressure because of the uncertainty
broadening of the energy levels, which effectively reduces
the energy-level separations (Chapovsky and Hermans
1999).

In interstellar space where the density of molecules is
very low (∼104 cm−3), the time of ortho – para conversion
is comparable to the time of star formation. Thus the spin
modification may retain the memory of chemistry at the
early stage of molecular cloud formation. Such memory,
however, is interrupted by chemical reactions, especially
through proton exchange reactions with H+ and H3

+ that
need to be considered in order to derive the correct memory.
Such reactions were considered with respect to symmetry
effect by Quack (1977).

Forbidden Rotational Transitions “Forbidden transi-
tions” mean transitions that do not obey ordinary dipole
selection rules. If we consider sufficiently high-order inter-
actions, both time independent and time dependent, no
transition in a molecule is strictly forbidden. As the exper-
imental techniques develop, we can study more forbidden
transitions.

Symmetry and Orders of Magnitude The electric dipole
selection rules for rotational transitions of symmetric top
molecules are ∆J(∆M) = ±1, 0, ∆K = 0, ∆I = 0 (ortho
↔ ortho, para ↔ para, etc.), and parity + ↔ −.
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Out of these rules, ∆K = 0 is the weakest rule since it is
based on geometrical symmetry of equilibrium structure and
not on rigorous symmetry operations that lead to the rest of
the rules. If the more rigorous symmetry operations of the
nuclear permutation is used, the rule should be ∆k = 3n

for S∗
3 or S∗

3/2 symmetric tops since

〈Jk|µ|J ′k′〉 = 〈Jk|(123)−1(123)µ(123)−1(123)|J ′k′〉
= e2πi(k′−k)/3〈Jk|µ|J ′k′〉 (50)

The ∆k = ±3 transitions are much weaker than the ordi-
nary ∆K = 0 transitions but are still sufficiently strong to
be observable by conventional microwave spectrometers
(Chu and Oka 1974). For decades, microwave spectro-
scopists had been limited to the ∆K = 0 transitions and
hence only one rotational constant B had been measured,
but the ∆k = ±3 transitions have allowed the measurement
of the other rotational constant A or C.

The breakdown of geometrical symmetry is caused
by centrifugal distortion due to rotation around an axis
perpendicular to the C3 axis. Applying the general order
of magnitude argument in Section 2.3.1 for vibrational
and rotational dependence of any physical quantity f , we
find that the coefficient of the rotation-induced electric
dipole moment is on the order of κ4µe ∼ 10−4 D. Thus
for J ∼ 10, the rotation-induced dipole moment is on the
order of ∼10−2 D and its rotation spectrum is ∼104 times
weaker than ordinary ∆K = 0 spectrum of polar molecules.
∆k = ±3 spectra of this magnitude were observed for PH3,
PD3, and AsH3 (Chu and Oka 1974).

Rotational spectra of tetrahedral molecules induced by
the same mechanism have been observed for CH4, SiH4

and GeH4. Their ∆J = 1 transitions were observed in the
far infrared using high pressure (0.75–1.6 atm) and long
path-length cell of over 100 m by Ozier and colleagues and
∆J = 0 transitions were observed in the microwave and
in the radiofrequency, the latter using double resonance
(Curl 1973). Readers are referred to Oka (1976) for more
information on these and other experiments.

Watson’s Theory Molecules with more than two equiv-
alent nuclei have high symmetry and accompanying degen-
eracies but various intramolecular interactions sponta-
neously break down the symmetry and degeneracies. The
Jahn–Teller effect in degenerate electronic states and �-
doubling in degenerate vibrational states are well-known
examples. Centrifugal distortion of molecules also breaks
down symmetry of the molecular configuration and induces
spectra that are not expected from the equilibrium struc-
ture. Presence of such an effect was initially considered
for ∆k = ±3 spontaneous emission of interstellar NH3

(Oka et al. 1971). Watson (1971) formulated the general

theory in which it was shown that the forbidden rota-
tional transitions exist for all common highly symmetric
molecules except those that have a center of symmetry.
He showed that the forbidden spectrum results from inten-
sity borrowing from two ordinary dipole-allowed transitions
(i) vibration–rotation transitions and (ii) rotational transi-
tions. The first applies to all molecules and is more general,
whereas the second applies only to polar molecules like
NH3, PH3, etc.

Since the beautiful general formulation of Watson may
not be easy to follow, the result for the simplest case of
H3

+ is derived here using elementary perturbation theory.
The first two terms of the rotational Hamiltonian

Ĥrot = �
2

2

[
J 2

X

IXX

+ J 2
Y

IYY

+ J 2
Z

IZZ

]
(51)

contains the symmetry breaking term

ĤS.B. = a�
2

4πI 2

√
h

cν2
qx(J

2
X − J 2

Y ) = 2hc

√
B3

ν2
qx(J

2
X − J 2

Y )

(52)
where qx is the dimensionless normal coordinate for the
component of the ν2 degenerate vibration symmetric with
respect to X. ĤS.B. is derived by expanding IXX and IYY

in Hrot into normal coordinate Qx , Iαα ∼ I e
αα + aαα

x Qx

(α = X, Y ) and using aYY
x = −aXX

x ≡ a = √
2I and Qx =

1
2π

√
h

cν2
qx (Oka 1967). We note that ĤS.B. mixes the

ground vibrational state (v, �) = (0, 0) and (1, ±1) state
and rotational level (J, k) with (J, k ± 2). The spontaneous
emission (J, k) → (J, k + 3) gains intensity from mixing
of (0, 0, J, k) and (1, −1, J, k + 2) and borrowing intensity
from the allowed (1, −1, J, k + 2) → (0, 0, J, k + 3)
transition and mixing of (0, 0, J, k + 3) and (1, 1, J, k + 1)
and borrowing intensity from the (1, 1, J, k + 1) → (0, 0,
J, k) transition. Using matrix elements 〈1, 1|qx |0, 0〉 = 1/2
and

〈J, k|J 2
X − J 2

Y |J, k + 2〉

= 1

2
[(J − k)(J − k − 1)(J + k + 1)(J + k + 2)]

1
2 etc.,

(53)
and using Hönl–London factors for the allowed transitions,
we obtain the intensity of (J, k) → (J, k + 3) transition as

S[(J, k) → (J, k + 3)] = 1

4
(θxx

x )2(J − k)(J − k − 1)

×(J − k − 2)(J + k − 1)

×(J + k + 2)(J + k + 3)

(2J + 1)/J (J + 1) (54)
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where the Watson coefficient is given as

θxx
x = 2

(
B

ν2

) 3
2 ∂µ

∂q2
(55)

in terms of the vibrational transition moment of the ν2

transition ∂µ/∂q2. We can obtain corresponding formula
for (J ± 1, k) → (J, k + 3) also. θxx

x is calculated to be
1.08 × 10−3 D (Pan and Oka 1986). Because of the large
rotational constant (B = 44.05 cm−1), Watson’s coefficient
of H3

+ is greater than that of NH3 and CH4 by 8 and 50,
respectively.

Rotational Spontaneous Emission of Interstellar H3
+ The

forbidden rotational transition was initially considered as
a possible mechanism of thermalization of interstellar
NH3 (Oka et al. 1971). Interstellar NH3 is produced in
high rovibrational levels by chemical reactions but cools
down to a lower level by a succession of dipole-allowed
spontaneous emissions (J, K) → (J, K − 1) in a minute or
so until it reaches the lowest J = K metastable level. The
spontaneous emission between the inversion levels is much
slower and takes a few months. It was initially thought that
dipole forbidden spontaneous emission from the metastable
level to lower level needs to invoke the molecular octopole
moment (because ∆k = 3) and thus takes longer than the
lifetime of the Universe. The spontaneous breakdown of
symmetry mentioned above showed that the ∆k = ±3
dipole transitions due to intensity borrowing are possible.
The calculated emission lifetimes are 230 years, 43 years,
and 22 years for (2,2) → (1,1), (3,3) → (2,0) and (4,4) →
(3,1), respectively. Although they are faster than previously
thought by some 10 orders of magnitude, they are still not
fast enough to be competitive with collisional relaxation
whose time interval is typically a few months at the
molecular cloud density of ∼104 cm−3.

This situation has changed drastically when interstellar
H3

+ was discovered (Geballe and Oka 1996). Since the Ein-
stein coefficient for spontaneous emission is proportional
to ν3 and Watson’s coefficient is proportional to B3/2, the
spontaneous emission time is approximately proportional to
the sixth power of the moment of inertia. It is shorter for
H3

+ (B = 44.05 cm−1) than for NH3 (B = 9.94 cm−1) by
nearly four orders of magnitude. The spontaneous emission
times for H3

+ are about a month or less. The rotational
energy diagram of H3

+ and spontaneous emission times
are given in Figure 6. Even the longest time of 27 days
for the (2,2) → (1,1) spontaneous emission is competi-
tive with collisions in dense clouds. It is much faster in
diffuse clouds with density of ∼102 cm−3 and create a
remarkable nonthermal proportional distribution (negative
temperature) between the (3,3) metastable level and the

J = 3 +
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Figure 6 Rotational levels of H3
+ and their symmetry. Sponta-

neous emissions are shown by arrows with emission time.

(2,2) unstable level. The competition between the spon-
taneous emission and collision makes the population of the
(2,2) level a sensitive indicator of the cloud density and
the population of the (3,3) level, which is 361 K above the
lowest (1,1) level, serves as a thermometer. A model calcu-
lation of thermalization of interstellar H3

+ has been worked
out (Oka and Epp 2004) and using its result, observations
have led to revelations of hitherto unsuspected presence of a
vast amount of high temperature (T ∼ 250 K) and low den-
sity (n ∼ 100 cm−3) molecular gas near the Galactic center
(Oka et al. 2005).
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ENDNOTES

a.This is not the case if SI units are used. In the SI unit
system where ε0 and µ0 are not equal to 1, physical
quantities involving c can be written in more than one way.
The fine structure constant, for instance, is either e2

2ε0hc
or

e2µ0c

2h
or e2

2h

√
µ0
ε0

, that is, c, ε0, and µ0 appear and disappear.

This is one of several reasons why authors of high-level
textbooks dislike using SI units.
b.The first three volumes of Landau and Lifshitz are
quoted many times in this chapter. For those with different
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versions, we mention just volumes without published year
except for special cases.
c.Readers are referred to Vilenkin (1988) for Lie groups and
special functions as their representations.
d.For a quantum mechanical state involving a half-integer
spin, the time reversal operator has to be applied four
times to bring the system back to its original state. This is
analogous to the fact stated earlier in the previous section
that a rotation of 2π changes the sign of the eigenfunction
for half-integer spin which comes back to the original state
only after a rotation of 4π .
e.Upper limits of the electric dipole moment of the electron
8.6 × 10−19 D and the neutron 3.0 × 10−17 D have been
reported.
f.An upper limit for splitting on the order of ∆ν/ν ∼ 10−14

has been reported.
g.See Appendix 1 of Edwards (1984) for a full translation.
h.The degeneracy of the K quantum number, k and −k,
for example in H3

+, disappears since only |k > −|−k >

satisfies the Pauli Principle for k 	= 3n.
i.Runge and Paschen (1896) observed two sets of spectral
lines and ascribed the stronger one to helium and weaker
one to “parhelium”. Later Bohr recommended to call the
stronger one “ortho-helium”.
j.The citation to Heisenberg’s Nobel Prize in 1932 reads
“for the creation of quantum mechanics, the application of
which has, inter alia, led to the discovery of allotropic forms
of hydrogen”, indicating that the ortho–para H2 was a big
issue at the time.
k.The mixing cannot occur within the 1Σ+

g ground state but
can occur with levels with the same parity and F in 1Σ+

u or
Πu excited states and borrow intensities from the allowed
1Σ+

u → 1Σ+
g transitions, etc.

ABBREVIATIONS AND ACRONYMS

QED Quantum Electrodynamics
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Please note that the abstract and keywords will not be included in the printed book, but are required for the online
presentation of this book which will be published on Wiley’s online platform. If the abstract and keywords are not
present below, please take this opportunity to add them now.

The abstract should be a short paragraph up to 200 words in length and there should be between five and ten
keywords.

ABSTRACT: Considerations of the order of magnitude and the symmetry of various intramolecular interactions form
the foundation of molecular spectroscopy. They are related and they together make molecular spectroscopy transparent
and tidy. In this chapter, they are discussed starting from the very fundamental. The order of magnitude has not been
discussed in any previous textbooks of molecular spectroscopy. The symmetry has been discussed in many textbooks and
discussions here are limited to the rotational and nuclear spin states and its application to forbidden rotational transitions
and the stability of nuclear spin modifications (ortho-, para- etc.).

KEYWORDS: molecular spectroscopy; order of magnitude; fine structure constant; Born–Oppenheimer constant;
symmetry; permutation–inversion group; parity; molecular rotation; spin modification; forbidden rotational transition
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