Detection of H$_3^+$ in the Diffuse Interstellar Medium Toward Cygnus OB2 No. 12

B. J. McCall,* T. R. Geballe, K. H. Hinkle, T. Oka

The molecular ion H$_3^+$ is considered the cornerstone of interstellar chemistry because it initiates the reactions responsible for the production of many larger molecules. Recently discovered in dense molecular clouds, H$_3^+$ has now been observed in the diffuse interstellar medium toward Cygnus OB2 No. 12. Analysis of H$_3^+$ chemistry suggests that the high H$_3^+$ column density (3.8 × 1014 per square centimeter) is due not to a high H$_3^+$ concentration but to a long absorption path. This and other work demonstrate the ubiquity of H$_3^+$ and its potential as a probe of the physical and chemical conditions in the interstellar medium.

The molecular ion H$_3^+$ is generally considered a fundamental molecule of interstellar chemistry, as it reacts efficiently with almost any neutral atom or molecule to initiate a network of ion-neutral reactions. It was suggested in the 1970s (1) that this network of reactions is responsible for producing molecules such as OH, CO, and H$_2$O, which not only serve as important astronomical probes but also play important roles in processes such as star formation.

The recent discovery of interstellar H$_3^+$ in dense molecular clouds toward the young stellar objects GL2136 and W33A (2), which are deeply embedded within the clouds, has provided direct observational evidence supporting the ion-neutral reaction scheme for the chemical evolution of molecular clouds. Subsequent observations have revealed the presence of abundant H$_3^+$ in many other dense clouds (3). Because of the simplicity of the H$_3^+$ chemistry, these observations provide direct estimates of the most fundamental properties of the clouds: number density, column length, and temperature.

In the course of carrying out this survey, we observed strong and broad H$_3^+$ absorption lines in the direction of the galactic center source GC IRS 3 (4). This finding suggested that H$_3^+$ is abundant not only in gravitationally bound dense clouds with high density ($n \sim 10^7$ to 10^8 cm$^{-3}$) but also in unbound diffuse clouds with low density ($n \sim 10^2$ to 10^5 cm$^{-3}$). To test this possibility, Cygnus OB2 No. 12 was observed, as this source is believed to be obscured largely by diffuse low-density clouds containing little molecular material (5). We report here the detection of a large amount of H$_3^+$ in the diffuse clouds in the direction of Cygnus OB2 No. 12.

Cygnus OB2 No. 12 (or VI Cygni 12) is the 12th member of the Cygnus OB2 association of young stars and was discovered in 1954 (6). This association is estimated to be 1.7 kpc (7) from Earth or about one-fifth of the distance to the center of the galaxy. The star Cygnus OB2 No. 12 suffers the largest extinction of any of the members of the association, $A_v \sim 10$, indicating that it has the largest column of absorbing material along its line of sight (8). On the basis of its extinction, distance, spectral type (B5), and luminosity class (Ie), the star Cygnus OB2 No. 12 is one of the most luminous stars in the galaxy (absolute visual magnitude $M_V \approx -10$), more than a million times brighter than our sun (9).

Although Cygnus OB2 No. 12 suffers higher extinction than other members of its association, it is generally accepted that all the extinction occurs in a spatially patchy distribution of the interstellar dust (5). The absence of the 3.08-μm water ice absorption feature, associated with dense molecular clouds, and the presence of a 3.4-μm hydrocarbon feature (5), associated with diffuse interstellar gas, indicate that no dense molecular clouds occur along the line of sight. The identification of the gas with a circumstellar shell is rejected on the basis of a lack of excess infrared emission and the unusually strong stellar wind (~ 1400 km s$^{-1}$) of Cygnus OB2 No. 12 (10).

We detected two closely spaced lines of H$_3^+$ near 3.67 μm toward Cygnus OB2 No. 12 on 11 July 1997, using the CGS4 spectrometer at the United Kingdom Infrared Telescope (UKIRT) (11). A third line near 3.71 μm was detected on 17 September 1997 with the use of the Phoenix infrared spectrometer on the 4.0-m Mayall telescope of the Kitt Peak National Observatory (KPNO) (12). To further constrain the chemistry of the line of sight toward Cygnus OB2 No. 12, we also obtained spectra of CO (13).

The reduced H$_3^+$ spectra are shown in Fig. 1. The left portion of the figure, taken with CGS4, shows absorption of the R(1,1)$^+$ line of para-p-H$_3^+$ and the R(1,0)$^+$ line of ortho-o-H$_3^+$ (14). The right portion, obtained with Phoenix, shows absorption of the R(1,1)$^-$ line of p-H$_3^+$. The reduced CO absorption spectrum from CGS4 is relatively weak (Fig. 2). In dense molecular cloud sources, the fundamental CO lines are often saturated, so the relatively weak absorption toward Cygnus OB2 No. 12 suggests that the relative abundance of CO is much lower than in dense molecular clouds.

The amount of H$_3^+$ toward Cygnus OB2 No. 12 can be expressed as the column density N(H$_3^+$), which can be defined as the integral of the H$_3^+$ number density (in molecules per cubic centimeter) along the line of sight $N = \int n(d) dl$. The equivalent width (in area), $W_\lambda = \int (1 - T_{\lambda}) dl$, is taken from the spectrum and can be related to the column density of the level N_{λ} (for an optically thin line) by the standard formula $W_\lambda = (8\pi \lambda^2 n_{\lambda} e N_\lambda) \mu^2$. In these formulas, μ^2 is the square of the transition dipole moment (a measure of the inherent strength of the transition) (14), λ and l are the wavelength and intensity of the radiation, respectively, h is Planck's con-

*B. J. McCall and T. Oka, Department of Astronomy and Astrophysics, Department of Chemistry, and the Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA.
T. R. Geballe, Joint Astronomy Centre, University Park, Hilo, HI 96720, USA.
K. H. Hinkle, National Optical Astronomy Observatories, Tucson, AZ 85726, USA.

*To whom correspondence should be addressed.
stated, and \(c \) is the speed of light.

Because the two \(p - H_3^+ \) lines \(R(1,1)^+ \) and \(R(1,1)^- \) arise from the same energy level, the column densities \(N \) derived from the two should agree. The large discrepancy (Table 1) is most likely due to the effect of a strong (~45%) deep terrestrial line of \(\text{CH}_4 \), at 3.6675 \(\mu \text{m} \), which was nearly coincident with the \(R(1,1)^+ \) line at the time of measurement. For the remainder of this discussion, we adopt a value for the \(H_3^+ \) column density of \(N(H_3^+) = N \text{ortho}^+ + N \text{para}^+ = 3.8 \times 10^{14} \text{ cm}^{-2} \). From the CO spectrum (Fig. 2) we estimate a value of \(N(\text{CO}) = 2 \times 10^{16} \text{ cm}^{-2} \) (15).

To interpret the observed column densities of \(H_3^+ \) and CO, we developed a model of the \(H_3^+ \) chemistry of the interstellar medium (16). Using this model, we can extract \([H_3^+], L\) (the effective path length of the absorption), and \([\Sigma H]\) (the total number density of H atoms).

The molecular ion \(H_3^+ \) is formed by a two-step process: cosmic-ray ionization of \(H_2 \) to \(H_2^+ \) and reaction of \(H_2^+ \) with \(H_2 \) to form \(H_3^+ \). Because the second step is faster than the first by many orders of magnitude, the formation rate of \(H_3^+ \) can be expressed as \(\zeta[H_3^+] \), where \(\zeta \) is the cosmic-ray ionization rate. There are two primary destruction paths for \(H_3^+ \): recombination with an electron and ion-neutral reaction with a neutral atom or molecule. The rate due to the former reaction is \(k[e^-][H_3^+] \), where \(k \) is the rate constant for electron recombination and \([e^-] \) is the number density of electrons. The dominant ion-neutral destruction path for \(H_3^+ \) is assumed to be reaction with CO, with a rate of \(k_{\text{CO}}[\text{CO}][H_3^+] \), where \(k_{\text{CO}} \) is the rate constant. If we assume a steady state, the rates of \(H_3^+ \) formation and destruction are equal, so that

\[
\zeta[H_3^+] = k[e^-][H_3^+] + k_{\text{CO}}[\text{CO}][H_3^+] \tag{1}
\]

Because not all of the number densities in this equation can be obtained by observations, some assumptions must be made to reduce the number of unknowns in this equation. First, we assume that all electrons in diffuse clouds come from ionization of atomic C to form \(C^+ \), so that \([e^-] = [C^+]\). Second, we assume that all C is in the form of either \(C^+ \) or CO, so that \([\Sigma C] = [C^+] + [\text{CO}]\), where \([\Sigma C]\) denotes the total concentration of gaseous C atoms in any form (18). Third, we assume that nearly all H is in the form of \(H \) or \(H_2 \), so that \([\Sigma H] = [H] + 2[H_2]\).

To understand the meaning of Eq. 1, we introduce a parameter that represents the fraction of \(H \) in molecular form, \(f = [H_2]/[\Sigma H] \), or \([H_3^+] = (f/2)[\Sigma H]\). We also introduce a parameter that represents the fraction of C in molecular form \(\alpha = [\text{CO}]/[\Sigma C] \), so that \([\Sigma C] = \alpha[\Sigma C] \) and \([C^+] = (1-\alpha)[\Sigma C] \). Substituting these relations into Eq. 1 and solving for \([H_3^+]\) yields

\[
[H_3^+] = \zeta \left(\frac{f}{2} \right) \left(\frac{1}{[\Sigma H]} \right) \left(\frac{1}{k_s(1-\alpha) + k_{\text{CO}}} \right) \tag{2}
\]

Note that the number density of \(H_3^+ \) does not depend on the absolute number density of the gas.

With the observed value of \(N(H_3^+) \), one can determine the effective path length \(L \) of the absorption using the approximate relation \(N(H_3^+) = [H_3^+]L \), which implies

\[
L = \frac{N(H_3^+)}{[H_3^+]} = \frac{2N(H_3^+)}{k_{\text{CO}}} \left(\frac{[\Sigma C]}{[\Sigma H]} \right) \cdot \left(k_s(1-\alpha) + k_{\text{CO}} \alpha \right) \tag{3}
\]

\[
\text{Fig. 2. Spectrum from 4.63 to 4.68 \(\mu \text{m} \) of Cygnus OB2 No. 12, showing R- and P-branch absorption lines of CO in the interstellar medium and emission lines of atomic H from the stellar atmosphere (Pfund \(\beta \) and Humphreys \(\epsilon \)). The spectrum was divided by a spectrum of the comparison star \(\gamma \) Cygni and was wavelength calibrated with the use of atmospheric absorption lines.}
\]

\[
\text{Fig. 3. Model results for the \(H_3^+ \) number density \([H_3^+]\) and the effective absorption path length \(L \) for Cygnus OB2 No. 12.}
\]

\[
\text{Fig. 4. Model results for the total number density of H atoms \([\Sigma H]\) for Cygnus OB No. 12.}
\]

\[
\text{Table 1. Observed \(H_3^+ \) lines and column densities derived from each line. Statistical uncertainties (\(\sigma \)) are given in parentheses, but systematic errors are difficult to estimate and may be larger. Also listed are the Doppler velocities with respect to the local standard of rest \(v_{\text{LSR}} \) and the observed line widths \(\Delta \nu \).}
\]

\begin{tabular}{|l|c|c|c|}
\hline
Transition & Rest wavelength (\(\mu \text{m} \)) & \(\mu \text{2} \) (D\(^2 \)) & \(W_0 \) (\(\mu \text{m} \)) & \(N_{\text{spec}} \) (\(\text{cm}^{-2} \)) & \(\Delta \nu \) (\(\text{km s}^{-1} \)) & \(v_{\text{LSR}} \) (\(\text{km s}^{-1} \))
\hline
\(R(1,1)^+ \) & 3.668084 & 0.0158 & 3.9(9) \times 10^{-6} & 1.6(4) \times 10^{14} & 17(5) & 8(5)
\hline
\(R(1,0) \) & 3.668516 & 0.0259 & 5.4(9) \times 10^{-6} & 1.4(2) \times 10^{14} & 22(5) & 11(5)
\hline
\(R(1,1)^- \) & 3.715478 & 0.0140 & 5.2(7) \times 10^{-6} & 2.4(3) \times 10^{14} & 16(3) & 8(3)
\hline
\end{tabular}

\[
\text{www.sciencemag.org • SCIENCE • VOL. 279 • 20 MARCH 1998}
\]

1911
To obtain an expression for the number density \([\text{H}_3^+] \), the definition of \(\alpha \) can be rewritten as \(\alpha = ([\text{CO}]/[\Sigma H])([\Sigma H]/[\Sigma C]) \). Substituting the approximate relation \([\Sigma H]/[\Sigma C] \equiv N(\Sigma H)/N(\Sigma C)\) into this and solving for \([\Sigma H]/[\Sigma C]\) gives

\[
N(\Sigma H) = \frac{N(\Sigma C)}{\alpha} \left(\frac{[\text{CO}]}{2\alpha N(\text{H}_3^+)} \right)^2 \frac{1}{k_1(1 - \alpha) + k_{\text{CO}} \alpha}
\]

Equations 3 and 4 can be combined to derive an expression for the number density of the cloud

\[
[S] \equiv \frac{N(\Sigma H)}{N} = \left(\frac{[\text{CO}]}{2\alpha N(\text{H}_3^+)} \right) \left(\frac{[\Sigma C]}{[\Sigma H]} \right)^2 \frac{1}{k_1(1 - \alpha) + k_{\text{CO}} \alpha}
\]

To determine \([\text{H}_3^+]\), \(L \), and \([\Sigma H]\), we used \(\xi \sim 3 \times 10^{-17} \text{s}^{-1} \) (19), \(f = 0.5 (20), [\Sigma H]/[\Sigma C] \sim 10^4 (21), k_5 \sim 1.8 \times 10^{-7} \text{ cm}^3 \text{s}^{-1} (22) \), and \(k_{\text{CO}} \sim 2 \times 10^{-6} \text{ cm}^3 \text{s}^{-1} (23) \). For \(N(\text{H}_3^+) \) and \(N(\Sigma C) \) we used our adopted observational values. The parameter \(\alpha \) is difficult to estimate, and we leave it as a free parameter.

The resulting values of \([\text{H}_3^+]\) and \(L \) for Cygnus OB2 No. 12 as a function of \(\alpha \) (Fig. 3) show that, as \(\alpha \) increases (more \(C \) in molecular form) from 0 to 1, \([\text{H}_3^+]\) increases from \(4 \times 10^{-7} \) to \(4 \times 10^{-5} \text{ cm}^{-3} \) and \(L \) decreases from \(200 \) to \(20 \) pc. The limit \(\alpha = 0 \) corresponds to the case where \(\text{H}_3^+ \) destruction is dominated by electron recombination (very diffuse clouds), and the limit \(\alpha = 1 \) corresponds to the case where \(\text{H}_3^+ \) destruction is dominated by reactions with \(\text{CO} \) (very dense clouds).

The key parameter in these estimates (\(\alpha \)) has not been determined, but, on the basis of observations and theoretical models of diffuse clouds (17), we infer that it is less than 0.1. From Fig. 3 we estimate \([\text{H}_3^+]\) \(\sim 4 \times 10^{-7} \text{ cm}^{-3} \) and \(L \) \(\sim 300 \) pc. Unlike \([\text{H}_3^+]\) and \([\Sigma H]\), changes a lot for \(\alpha < 0.1 \) (Fig. 4). From the visual extinction we can estimate \(N(\Sigma H) \), assuming the standard gas-to-dust ratio (24). If all of the extinction arises from the region where \(\text{H}_3^+ \) is observed (25), we estimate \(N(\Sigma H) \sim 2 \times 10^{22} \text{ cm}^{-2} \). The calculated \(L \sim 300 \) pc then implies \([\Sigma H] \sim 20 \text{ cm}^{-3} \).

Because \(\text{H}_3^+ \) undergoes constant chemical reactions with \(\text{H}_2 \) at a Langevike rate (26) and because there are no radiative transitions between \(\text{H}_2 \) and \(\text{H}_3^+ \), \(\text{H}_3^+ \) is in thermal equilibrium with \(\text{H}_2 \) in the cloud. By measuring the column densities of \(\text{H}_2 \) and \(\text{H}_3^+ \), one can estimate the kinetic temperature of the cloud. In thermal equilibrium, the ratio of the two states is given by the Boltzmann expression

\[
\frac{N_{\text{para}}}{N_{\text{ortho}}} = \frac{g_{\text{ortho}}}{g_{\text{para}}} \exp \left(\frac{\Delta E}{k_T} \right)
\]

where \(g \) values are the statistical weights of the \(\alpha \) and \(\beta \) states, \(\Delta E \) is the energy difference between them, \(k \) is the Boltzmann constant, and \(T \) is temperature. Using the data in Table 1, we obtain an estimate of the cloud temperature of 27 K. This temperature is higher than the excitation temperature derived from the CO spectrum (Fig. 2), which is 10 K. This difference in temperatures may be reasonable because spontaneous emission will lower the excitation temperature of CO in diffuse clouds, where the collisional pumping to higher rotational states is slow as a result of the low number density.

These observations indicate that \(N(\text{H}_3^+) \) in the diffuse clouds toward Cygnus OB2 No. 12 (3.8 \(\times \) 10^{-4} \text{ cm}^{-2} \) is comparable to that of the dense clouds toward the young stellar objects GL2136 (4.0 \(\times \) 10^{-4} \text{ cm}^{-2} \) and W33A (6.0 \(\times \) 10^{-4} \text{ cm}^{-2} \) (2)). This is not because of a higher number density \([\text{H}_3^+]\) but because of a large effective path length \(L \) toward Cygnus OB2 No. 12, which may cross many diffuse clouds. Although large column densities of \(\text{H}_3^+ \) have been predicted in diffuse clouds (17), these calculations were based on a value of the \(\text{H}_3^+ \) electron recombination rate that has since been shown to be more than three orders of magnitude too low (22). This detection and analysis extend the diagnostic powers of \(\text{H}_3^+ \) observations.
The usual Pt in which the effectiveness and stability of approach to suggest new process conditions King and co-workers used a surface science spectroscopy of F. H. Chaffee Jr. and R. E. White [Astrophys. J. Suppl. Ser. 50, 169 (1982)] shows evidence of K I absorption only near the observed velocity of H$_2^+$.

28. We thank G. Sandell and R. P. Tilanus for obtaining the JCMT CO spectra; E. Herbst, L. M. Hobbs, T. P. Snow, P. Thaddeus, and E. F. van Dishoeck for helpful conversations and correspondences; and J. H. Black for assistance in interpreting the C$_2$ data and for many other helpful comments. B.J.M. is supported by the Fannie and John Hertz Foundation. The University of Chicago portion of this work was supported by NSF grant PHYS-9722691 and NASA grant NAGS-4234.

15 December 1997; accepted 5 February 1998