Charge induced H₂ spectrum in γ-ray irradiated para-H₂ crystals

Takamasa Momose,a) Karen E. Kerr, David P. Weliky, Charles M. Gabrys, Robert M. Dickson, and Takeshi Oka

Department of Chemistry, Department of Astronomy and Astrophysics, The University of Chicago, Chicago, Illinois 60637

(Received 18 February 1994; accepted 14 March 1994)

A sharp spectral line has been observed in γ-ray irradiated para-H₂ crystals and assigned to the pure vibrational Q₁(0)(v = 1→0, J = 0→0) transition induced via the Condon effect by charges distributed in the crystal. The remarkable sharpness and stability of the signal is reported and discussed.

The spectroscopic study of ionized solid hydrogen was initiated when Souers and his colleagues studied infrared spectra of isotopic solid hydrogens containing tritium and observed new spectral features caused by the radioactivity.1 Since then, extensive spectroscopic studies on ionized solid hydrogen have been carried out by groups at Lawrence Livermore, University of Guelph, and McMaster University using tritium3-5 and 15 MeV proton beams.3-5 Several induced features in the infrared1-5 and ultraviolet6,7 spectra of isotopic species have been interpreted on the basis of a variety of physical effects such as the Stark shift,6 electron bubbles,10,11 small polaron holes,11 interference effects,12 and ion clustering.13 Recently, Chan et al. conducted a medium resolution Fourier transform spectroscopic study on ionized para-H₂ crystals using 3 MeV electron bombardment.14,15 Their results were complementary to previous results in that features reported earlier, such as the near infrared transition ascribed to electron bubbles,10,11 some of the Stark shifted lines, were not observed and several features hitherto unreported were observed. In particular, a sharp induced spectral line at 4149.66 cm⁻¹ was always found to be close to that of the simulated Raman spectrum21 for which the At⁻⁺ and dye lasers provided the pump and probe radiations, respectively. The optical arrangement for the simultaneous observation is shown in Fig. 1.

A low resolution spectrum in the region of the Q₁(0) and Q₁(1) transitions before and after the γ-ray irradiation is shown in Fig. 2. The prominent sharp induced feature at 4149.66 cm⁻¹ is the subject of this study. The interpretation of other broader γ-ray induced features which are observed in longer wavelength regions is not as certain and will be discussed after more experiments.

Under the high resolution of laser spectroscopy, the γ-ray induced line was found to be extremely sharp and intense. An example of the observed spectrum is shown in Fig. 3. The intensity and the line shape varied depending on the run, the probed position of the crystal, and the polarization of the laser field. However, the frequency of the strongest peak (4149.696 cm⁻¹) was always found to be close to that of the simulated Raman spectrum of the unionized para-H₂ crystals reported by us earlier.21 This strongly suggested that this spectral line corresponds to the Q₁(0)(v = 1→0, J = 0→0) pure vibrational transition obeying the exciton momentum rule Δk⁺ = 0. Such an infrared spectrum can be induced by the electric field due to electric charges produced in the crystal as the result of the γ-ray irradiation as explained below. Electric field induced spectrum in homonuclear diatomic molecules was theoretically predicted by Condon,18 who showed that the transitions obey the Raman type selection rules. Such a spectrum was observed in pressurized gaseous hydrogen by applying an external electric field.23,24 We have recently exploited Condon modulation to increase the sensitivity of solid hydrogen spectroscopy.25 The simultaneously observed spectrum clearly supports our interpretation that the infrared spectrum is caused by the electric field in the crystal induced by radiolysis.

The samples were probed near the wall of the container since the crystal was opaque towards the center. In such regions the intensity of the induced spectrum is maximized...
FIG. 1. Apparatus for the simultaneous spectroscopy of the infrared and Raman transitions. The nonlinearity of LiNbO₃ is used for the former and that of solid H₂ is used for the latter. D.M., dichroic mirror; S.A., spectrum analyzer; P.B., polarizer beamsplitter.

when the laser electric field is normal to the wall. This indicates that the charge induced field is not random but is oriented perpendicular to the wall. Using Condon's theory, we obtained the relation between the observed transmission of radiation $I(\nu)/I_0(\nu)$ and the electric field E as

$$
\frac{1}{I} \int \ln \left(\frac{I_0(\nu)}{I(\nu)} \right) d\nu = \sum \gamma(\nu) d\nu = \frac{8 \pi^3 \nu}{3hc} n(\alpha_0 E)^2,
$$

(1)

where $\gamma(\nu)$ is the absorption coefficient, $\alpha_0 (0.170 \times 10^{-24} \text{ cm}^{-3})$ is the matrix element of the isotropic polarizability,²⁶ and $n (2.61 \times 10^{22} \text{ cm}^{-3})$ is the number density of H₂ which are all in the $J=0$ state. Equation (1) is valid for a completely oriented electric field E. For a randomly oriented field, 3 in the denominator should be replaced by 9. The observed values of $I(\nu)/I_0(\nu)=0.6-0.65$ and the widths of 160–900 MHz depending on the crystal gives the induced transition dipole moment of $\mu=\alpha_0 E=2-6 \times 10^{-6}$ Debye and the electric field of $4-12 \text{kV/cm}$. The Stark shift of the spectral line is negligibly small at this field ($\Delta \nu \sim 10 \text{ kHz}$).

One surprising aspect of our observation is the sharpness of the induced spectrum, even if we include the accompanying structure. In a para-H₂ crystal, the vibrational excitation (vibron) hops around the crystal sites with a frequency that is half of the vibrational coupling parameter, or $\epsilon'/2 \sim 5.4 \text{ GHz}$, and forms a Bloch state²²,²⁷ with a width of $\sim 3.5 \text{ cm}^{-1}$ (the strongest broad feature in Fig. 2). The sharpness of the Raman type spectral line results from the vibron momentum rule $\Delta k^+ = 0$ which locates the spectral line at the lowest end of the vibron band, $7.23 \epsilon'$ below the origin. In order for this rule to hold rigorously, all molecules must have the same transition moment and the crystal must be perfect.²² Clearly both of these conditions are violated in the ionized crystal, but the sharpness of the observed spectrum indicates that they are still approximately satisfied.

The charge induced signal was found to be very stable. It lasts several days without a decrease in intensity. When the crystal temperature was varied from 4.2 to 13.5 K near the triple point, the position of the induced spectrum moved $\sim 4 \text{ GHz}$ towards higher frequency due to the expansion of the crystal and the resulting lowering of the vibron hopping rate and the crystal matrix shift.²⁵ When the temperature was lowered back to 4.2 K, the intensity of the signal was approximately equal to the original value indicating the amazing stability of the charge distribution in the crystal. Only

FIG. 2. Low resolution ($\sim 0.1 \text{ cm}^{-1}$) spectrum of para-H₂ crystal before (upper trace) and after the γ-ray irradiation using a BOMEM DA-2 FTIR spectrometer. Arrow shows the sharp induced feature which is the subject of this paper. The apparent reduction of absorption in the lower trace is due to a lower gain setting.

FIG. 3. Simultaneously recorded signal of the y-ray induced spectrum using infrared spectroscopy (middle trace) and stimulated Raman spectroscopy (lower trace). The upper trace gives interference fringes of a spectrum analysis separated by 1500 MHz.

when the crystal was melted above the triple point, did the feature disappear.

Based on these observations, it is inferred that the following sequence of events occur in the crystal. First the 1.17 and 1.33 MeV y-ray ionize H₂ through Compton scattering. The cross section for this process can be estimated to be \(2.2 \times 10^{-25} \text{ cm}^2\) and thus the mean free path of a y-ray in solid H₂ is \(\sim 1 \text{ m}\) while it is \(\sim 2 \text{ cm}\) in the Cu container. The scattered electrons have energies of a fraction of a MeV and they initiate cascades of ionizations which stop after a few mm. Altogether approximately \(1.5 \times 10^{17} \text{ cm}^{-3}\) of ionizations occur in the crystal. The ion density is higher near the wall of the container because of the higher rate (×50) of Compton scattering in Cu. This and the absorption of electrons by Cu causes the observed alignment of the electric field normal to the wall. The electron bombardment also generates a copious amount of hydrogen atoms since the cross sections of H₂ ionization and dissociation are comparable for low energy electrons. Miyazaki et al. observed the ESR spectrum of hydrogen atoms and argued that they settle in substitutional sites.

The ejected electrons cannot be localized on H₂ and they migrate through the crystal. Many of them recombine with cations. When they reach the wall they fall into the metal due to the work function of Cu (4.56 eV). Some electrons will be localized on hydrogen atoms, due to its electron affinity (0.75 eV) to form \(\text{H}^-\). Such charge may be stabilized further by forming anion clusters \(\text{H}^-\text{(H}_2)_n\). While such clusters are thermodynamically unstable when zero point vibrations are taken into account and have never been observed in the gaseous phase, they have binding energy of several kcal/mol and may be stabilized in the solid. Localization of electrons in the form of bubbles is not considered here since we do not observe a corresponding near infrared signal. How many electrons stabilize in the form of the negative ion clusters remains to be seen.

The \(\text{H}_2^+\) ions produced by the ionization immediately react with surrounding H₂ to form \(\text{H}_3^+\) by the well-known reaction

\[
\text{H}_2^+ + \text{H}_2 \rightarrow \text{H}_3^+ + \text{H}\,
\]

which has a large Langvin cross section (\(-100 \text{ Å}^2\)) and exothermicity (1.7 eV). The \(\text{H}_2\) ions attract neighboring \(\text{H}_2\) and stabilize in the form of cluster ions \(\text{H}_3^+(\text{H}_2)_n\). During and shortly after the y-ray irradiation, many of them recombine with electrons and are neutralized. However, once that phase of the process is over, they are localized in the crystal. The observed field induced signal shows that they are quite stable.

The observed intensity of the field induced signal and the electric field calculated from it is related to the density of charges in the crystal. Their estimate, however, depends on how many anions are stabilized in the crystal. In one extreme, we can consider the case in which all electrons are exhausted either by recombination or by falling into the Cu and the field is due to randomly localized positive charges. For this case an application of Gauss’ theorem gives a charge density estimate of \(-10^{10} \text{ cm}^{-3}\). At the other extreme, we may consider the case in which the densities of the positive and negative charges are comparable, that is, the crystal is approximately neutral. For this case we estimate a charge density of \(~10^{15} \text{ cm}^{-3}\). For the former, the accumulative field of positive ions induces the \(Q_1(0)\) transition, while for the latter the local field between cations and anions induces...
it. While the stability of the signal favors the former, it is likely that the charge impregnated crystal is in a state between the two extreme cases. We plan to observe the spectrum $H_2^+ (H_2)_n$ cluster directly to determine the charge concentration.

In both cases H_2 molecules close to a charge experience large electric fields. Their spectral lines are shifted many cm$^{-1}$ and they do not form a sharp spectrum. However, the Stark shift $\Delta \nu = - (\alpha_1 - \alpha_0) e^2/2h R^4$ decreases rapidly as the distance R from the charge $\alpha_1 - \alpha_0 = 7.0 \times 10^{-26}$ cm3 is the difference of the isotropic polarizability between the $\nu = 1$ and 0 states. For $R = 1.5 R_0$ (where $R_0 = 3.793$ Å in the intermolecular distance), the Stark shift is calculated to be 12 MHz well within the observed line width. Therefore, even for the highest charge density of 10^{15} cm$^{-3}$, for which the average intercharge distances are on the order of $300 R_0$, the $Q_1 (0)$ transitions of most molecules fall in the observed spectral width. Molecules relatively close to charges (but not too close) absorb more and those farther away less.

Linewidth caused by the violation of the $\Delta \kappa^+ = 0$ rule because of the finite size of the crystal under similar electric field may be estimated from the exciton dispersion relation,

$$E_k = -7.23 e^4 \frac{h^2 k^2}{2M},$$

(2)

where $M = h^2/2e R_0^3 \approx 3.2$ a.m.u. is the effective mass of the vibron. For a finite size R of the domain, the uncertainty calculation will be reported later.

In conclusion we have observed a sharp spectral line in γ-ray irradiated para-H_2 crystals and have assigned it to the $Q_1 (0)$ transition induced by the electronic field of charges distributed in the crystal. We believe that this intense and well defined spectrum with its long life time will be useful for monitoring production, annihilation and transfer of charges in the crystal.

We acknowledge useful conversations with M. Inokuti and T. Shida on γ-ray radiolysis and the help of A. Suirmicas and A. Trifunac of the Argonne National Laboratory for use of their γ-ray facility. This work was supported by the Air Force Grant No. F33615-90C-2035.

aPresent address: Department of Chemistry, Kyoto University, Kyoto, Japan.

References: